Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:10:14.981Z Has data issue: false hasContentIssue false

Almost-Lp-projections and Lp isomorphisms

Published online by Cambridge University Press:  14 November 2011

Michael Cambern
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.
Krzysztof Jarosz
Affiliation:
Department of Mathematics, Southern Illinois University at Edwardsville, Edwardsville, IL 62026, U.S.A.
Georg Wodinski
Affiliation:
Institut für Mathematik I, Freie Universität Berlin, Arnimalle 3, D-1000 Berlin 33, Germany

Synopsis

Lp -summands and Lp -projections in Banach spaces have been studied by E. Behrends, who showed that for a fixed value of p, l ≦ p ≦ ∞, p ≠ 2, any two Lp -projections on a given Banach space E commute. Here we introduce the notion of almost-Lp -projections, and we establish a result which generalises Behrends' theorem, while also simplifying its proof. Almost-Lp-projections are then applied to the study of small-bound isomorphisms of Bochner LP -spaces. It is shown that if the Banach space E satisfies a geometric condition which, in the finite-dimensional case, reduces to the absence of non-trivial Lp-summands, then for separable measure spaces, the existence of a small-bound isomorphism between Lp1, E) and LP2, E) implies that these Bochner spaces are, in fact, isometric.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alspach, D.. Small into isomorphisms on L p spaces. Illinois J. Math. 27 (1983), 300314.CrossRefGoogle Scholar
2Banach, S.. Théorie des opérations linéaires (Monografje Matematyczne, Warszawa, 1932).Google Scholar
3Behrends, E.. L p-Struktur in Banachräumen. Studio Math. 55 (1976), 7185.CrossRefGoogle Scholar
4Behrends, E. et al. Lp-structure in real Banach Spaces, Lecture Notes in Mathematics 613 (Berlin: Springer, 1977).CrossRefGoogle Scholar
5Benyamini, Y.. Near isometries in the class of L 1-preduals. Israeli. Math. 20 (1975), 275281.CrossRefGoogle Scholar
6Cambern, M.. The isometries of L p(X, K). Pacific J. Math. 55 (1974), 917.CrossRefGoogle Scholar
7Fleming, R. J. and Jamison, J. E.. Classes of operators on vector-valued integration spaces. J. Austral. Math. Soc. Ser. A 24 (1977), 129138.CrossRefGoogle Scholar
8Greim, P.. Hilbert spaces have the Banach-Stone property for Bochner spaces. Bull. Austral. Math. Soc. 27 (1983), 121128.CrossRefGoogle Scholar
9Lamperti, J.. On the isometries of certain function spaces. Pacific J. Math. 8 (1958), 459466.CrossRefGoogle Scholar
10Jarosz, K.. Perturbations of Banach Algebras, Lecture Notes in Mathematics 1120 (Berlin: Springer, 1985).CrossRefGoogle Scholar
11Jarosz, K.. A generalization of the Banach–Stone theorem. Studia Math. 73 (1982), 3339.CrossRefGoogle Scholar
12Sourour, A. R.. The isometries of L p(Ω, X). J. Fund. Anal. 30 (1978), 276285.CrossRefGoogle Scholar