Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:00:34.838Z Has data issue: false hasContentIssue false

What determines fuel selection in relation to exercise?

Published online by Cambridge University Press:  28 February 2007

Arne Lindholm
Affiliation:
Department of Medicine and Surgery, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 7018, 750 07 Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Bangsbo, J., Graham, T. E., Kiens, B. & Saltin, B. (1992). Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. Journal of Physiology 451, 205227.CrossRefGoogle ScholarPubMed
Bergström, J., Hermansen, L., Hultman, H. & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71, 140150.CrossRefGoogle ScholarPubMed
Björntorp, P. (1991). Importance of fat as a support nutrient for energy: metabolism of athletes. Journal of Sports Sciences 9, 7176.CrossRefGoogle ScholarPubMed
Costill, D. L., Thomason, H. & Roberts, E. (1973). Fractional utilisation of the aerobic capacity during distance running. Medicine and Science in Sport and Exercise 5, 248252.CrossRefGoogle ScholarPubMed
Dohm, L. (1986). Protein as a fuel for endurance exercise. Exercise and Sport Science Reviews 143, 143173.Google Scholar
Essén-Gustavsson, B., Karlström, K. & Lindholm, A. (1984). Fibre types, enzyme activities and substrate utilisation in skeletal muscles of horses competing in endurance rides. Equine Veterinary Journal 16, 197202.CrossRefGoogle ScholarPubMed
Essén-Gustavsson, B. & Lindholm, A. (1985). Muscle fibre characteristics of active and inactive standardbred horses. Equine Veterinary Journal 17, 434438.CrossRefGoogle ScholarPubMed
Essén-Gustavsson, B. & Rehbinder, C. (1985). Skeletal muscle characteristics of reindeer (Rangifer tarandus). Comparative Biochemistry and Physiology 82A, 675679.CrossRefGoogle Scholar
Gollnick, P. D., Pernow, B., Essén, B., Jansson, E. & Saltin, B. (1981). Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clinical Physiology 1, 2742.CrossRefGoogle Scholar
Gollnick, P. D. & Saltin, B. (1988). Fuel for muscular exercise. Role of fat. In Exercise, Nutrition and Energy Metabolism, pp. 7288 [Horton, E. S. and Terjung, R. L., editors]. New York: Macmillan Publishing Corporation.Google Scholar
Gottlieb, M., Essén-Gustavsson, B., Lindholm, A. & Persson, S. (1989). Effect of a draught loaded interval training programme on skeletal muscle in the horse. Journal of Applied Physiology 67, 570577.CrossRefGoogle ScholarPubMed
Henriksson, J. (1977). Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. Acta Physiologica Scandinavica 270, 661676.Google ScholarPubMed
Hermansen, L. & Stensvold, J. (1972). Production and removal of lactate during exercise in man. Acta Physiologica Scandinavica 86, 191201.CrossRefGoogle ScholarPubMed
Hermansen, L. & Vaage, O. (1977). Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. American Journal of Physiology 233, E422E429.Google ScholarPubMed
Hurley, B. F., Nemeth, P. M., Martin, W. H. III, Hagberg, J. M., Dalsky, G. P. & Holloszy, J. O. (1986). Muscle triglyceride utilization during exercise: effect of training. Journal of Applied Physiology 60, 562567.CrossRefGoogle ScholarPubMed
Lindholm, A., Bjerneld, H. & Saltin, B. (1974). Glycogen depletion pattern in muscle fibres of trotting horses. Acta Physiologica Scandinavica 90, 475484.CrossRefGoogle ScholarPubMed
Nordheim, K. & Völlestad, N. K. (1990). Glycogen and lactate metabolism during low-intensity exercise in man. Acta Physiologica Scandinavica 139, 475484.CrossRefGoogle ScholarPubMed
Pagan, J. D., Essén-Gustavsson, B., Lindholm, A. & Thornton, J. (1987). The effect of dietary energy source on exercise performance in standardbred horses. In Equine Exercise Physiology, vol. 2, pp. 686700 [Gillespie, J. R. and Robinson, N. E., editors]. Davis, California: ICEEP Publications.Google Scholar
Pösö, A. R., Essén-Gustavsson, B. & Persson, S. G. B. (1993). Metabolic response to standardised exercise test in standardbred trotters with red cell hypervolemia. Equine Veterinary Journal 25, 527531.CrossRefGoogle Scholar
Saltin, B. & Åstrand, P.-O. (1993). Free fatty acids and exercise. American Journal of Clinical Nutrition 57, 752S758S.CrossRefGoogle ScholarPubMed
Saltin, B. & Gollnick, P. D. (1988). Fuel for muscular exercise: Role of carbohydrate. In Exercise, Nutrition and Energy Metabolism, pp. 4571 [Horton, E. S. and Terjung, R. L., editors]. New York: Macmillan Publishing Corporation.Google Scholar
Valberg, S. & Essén-Gustavsson, B. (1987). Metabolic response to racing determined in pools of type I, IIA and IIB fibers. In Equine Exercise Physiology, vol. 2, pp. 290301 [Gillespie, J. R. and Robinson, N. E., editors]. Davis, California: ICEEP Publications.Google Scholar
Valberg, S., Essén-Gustavsson, B., Lindholm, A. & Persson, S. (1985). Energy metabolism in relation to skeletal muscle fibre properties during treadmill exercise. Equine Veterinary Journal 17, 439444.CrossRefGoogle ScholarPubMed