Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T01:03:50.516Z Has data issue: false hasContentIssue false

Postprandial lipid metabolism: effects of dietary fatty acids

Published online by Cambridge University Press:  28 February 2007

Christine M. Williams
Affiliation:
Hugh Sinclair Unit of Human Nutrition, Department of Food Science and Technology, University of Reading, Reading RG6 6AP
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Brown, A. J. & Roberts, D. C. K. (1991). Moderate fish oil intake improves lipemic response to a standard fat meal. Arteriosclerosis & Thrombosis 11, 457466.Google Scholar
Chait, A., Brazer, R. L., Tribble, D. L. & Krauss, R. M. (1993). Susceptibility of small, dense, low density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. American Journal of Medicine 94, 350356.Google Scholar
Chautan, M., Charbonnier, M., Leonardi, J., Andre, M., Lafont, H. & Nalbone, G. (1990). Modulation of lipid chylomicron-synthesizing enzymes in rats by the dietary (n-6):(n-3) fatty acid ratio. American Institute of Nutrition 121, 13051310.Google Scholar
Cohn, J. S. (1994). Postprandial lipid metabolism. Current Opinion in Lipidology 5, 185190.CrossRefGoogle ScholarPubMed
de Bruin, T. W. A., Brouwer, C. B., van Linde-Sibenius Trip, M., Jansen, H. & Erkelens, D. W. (1993). Different postprandial metabolism of olive oil and soybean oil: a possible mechanism of the high-density lipoprotein conserving effect of olive oil. American Journal of Clinical Nutrition 589, 477483.Google Scholar
Demacker, P. N. M., Reijnen, I. G. M., Katan, M. B., Stuyt, P. M. J. & Stalenhoef, A. F. H. (1991). Increased removal of remnants of triglyceride-rich lipoproteins on a diet rich in polyunsaturated fatty acids. European Journal of Clinical Investigation 21, 197203.Google Scholar
Department of Health (1991). Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: H.M. Stationery Office.Google Scholar
Department of Health. (1994). Nutritional Aspects of Cardiovascular Disease. Report on Health and Social Subjects no. 46. London: H.M. Stationery Office.Google Scholar
Foger, B. & Patsch, J. R. (1993). Strategies and methods for the assessment of disturbed postprandial lipid metabolism. Current Opinion in Lipidology 4, 428433.CrossRefGoogle Scholar
Georgopoulos, A., Kafonek, S. D. & Raikhel, I. (1994). Diabetic postprandial triglyceride-rich lipoproteins increase esterified cholesterol accumulation in THP-1 macrophages. Metabolism 43, 10631072.Google Scholar
Groot, P. H. E., de Boer, B. C. J., Haddeman, E., Houtsmuller, U. M. T. & Hulsmann, W. C. (1988). Effect of dietary fat composition on the metabolism of triacylglycerol-rich plasma lipoproteins in the postprandial phase in meal-fed rats. Journal of Lipid Research 29, 541555.Google Scholar
Groot, P. H. E., van Stiphout, W. A. H. J., Krauss, X. H., Jansen, H., van Tol, A., van Ramshorst, E., Chin-On, S., Hofman, A., Cresswell, S. R. & Havekes, L. (1991). Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arteriosclerosis & Thrombosis 11, 653662.Google Scholar
Gregory, J., Foster, K., Tyler, H. & Wiseman, M. (1991). The Dietary and Nutritional Survey of British Adults. London: H.M. Stationery Office.Google Scholar
Griffin, B. A. (1997). Low-density lipoprotein subclasses: mechanisms of formation and modulation. Proceedings of the Nutrition Society 56, 693702.Google Scholar
Harris, W. S. & Connor, W. E. (1980). The effects of salmon oil upon plasma lipids, lipoproteins and triglyceride clearance. Transactions of the American Physicians Association 43, 179184.Google Scholar
Harris, W. S., Connor, W. E., Alam, N.& Illingworth, D. R. (1988). Reduction of postprandial triglyceridemia in humans by dietary n-3 fatty acids. Journal of Lipid Research 299, 14511460.Google Scholar
Harris, W. S. & Muzio, F. (1993). Fish oil reduces postprandial triglyceride concentrations without accelerating lipid-emulsion removal rates. American Journal of Clinical Nutrition 58, 6874.Google Scholar
Harris, W. S. & Windsor, S. L. (1991). n-3 Fatty acid supplements reduce chylomicron levels in healthy volunteers. Journal of Applied Nutrition 43, 515.Google Scholar
Havel, R. J. (1994). Postprandial hyperlipidemia and remnant lipoproteins. Current Opinion in Lipidology 5, 102109.Google Scholar
Hazzard, W. R. & Bierman, E. L. (1976). Delayed clearance of chylomicron remnants following vitamin A containing fat loads on broad-beta disease (type II hyperlipoproteinemia). Metabolism 25, 777801.CrossRefGoogle Scholar
Hodis, H. N. & Mack, W. J. (1995). Triglyceride-rich lipoproteins and the progression of coronary artery disease. Current Opinion in Lipidology 6, 209214.Google Scholar
Jackson, K. G., Knapper, J. M. E., Zampelas, A., Gould, B. J., Lovegrove, J. A., Wright, J. & Williams, C. M. (1995). Apolipoprotein B-48 and retinyl ester responses to meals of varying monounsaturated fatty contents. Atherosclerosis 115, S16.Google Scholar
Karpe, F. (1997). Postprandial lipid metabolism in relation to coronary heart disease. Proceedings of the Nutrition Society 56, 671678.Google Scholar
Karpe, F. & Hamsten, A. (1995). Postprandial lipoprotein metabolism and atherosclerosis. Current Opinion in Lipidology 6, 123129.CrossRefGoogle ScholarPubMed
Karpe, F., Steiner, G., Uffelman, K., Olivecrona, T. & Hamsten, A. (1994). Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 106, 8397.Google Scholar
Kinoshita, M., Krul, E. S. & Schonfield, G. (1990). Modification of the core lipids of low density lipoproteins produces selective alterations in the expression of apo B-100 epitopes. Journal of Lipid Research 31, 710718.Google Scholar
Krasinski, S. D., Cohen, J. S., Russell, R. M. & Schaefer, E. J. (1990). Postprandial vitamin A metabolism in humans: A reassessment of the use of plasma retinyl esters as markers for intestinally derived chylomicrons and their remnants. Metabolism 39, 357365.Google Scholar
Levy, E., Roy, C. C., Goldstein, R., Bar-On, H. & Ziv, E. (1991). Metabolic fate of chylomicrons obtained from rats maintained on diets varying in fatty acid composition. Journal of the American College of Nutrition 10, 6978.Google Scholar
Lichtenstein, A. H., Ausman, L. M., Carrasco, W., Jenner, J. L., Gualtieri, L. J., Goldin, B. R., Ordovas, J. M. & Schaefer, E. J. (1993). Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a National Cholesterol Education Program Step 2 Diet. Arteriosclerosis & Thrombosis 13, 15331542.Google Scholar
Lovegrove, J. A., Brooks, C. N., Murphy, M. C., Gould, B. J. & Williams, C. M. (1997). Use of manufactured foods enriched with fish oils as a means of increasing long-chain n-3 PUFA intake. British Journal of Nutrition 78 (In the Press).CrossRefGoogle Scholar
Mamo, J. C. L. & Wheeler, J. R. (1994). Chylomicrons and their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low density lipoprotein, high density lipoprotein and albumin. Coronary Heart Disease 5, 695705.Google Scholar
Miller, G. J. (1997). Postprandial lipid metabolism and thrombosis. Proceedings of the Nutrition Society 56, 739744CrossRefGoogle ScholarPubMed
Murphy, M. C., Zampelas, A., Puddicombe, S. M., Furlonger, N. P., Morgan, L. M. & Williams, C. M. (1993). Pretranslational regulation of the expression of the lipoprotein lipase gene by dietary fatty acids. British Journal of Nutrition 70, 727736.Google Scholar
Murthy, S., Albright, E., Mathur, S. N. & Field, F. J. (1990). Effect of eicosapentaenoic acid on triacylglycerol transport in CaCo-2 cells. Biochimica et Biophysica Acta 1045, 147155.Google Scholar
Nigon, F., Lesnik, P., Rouis, M. & Chapman, M. J. (1991). Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. Journal of Lipid Research 32, 17411753.Google Scholar
Nozaki, S., Garg, A., Vega, G. L. & Grundy, S. M. (1991). Postheparin lipolytic activity and plasma lipoprotein response to n-3 polyunsaturated fatty acids in patients with primary hypertriglyceridemia. American Journal Clinical Nutrition 53, 638642.Google Scholar
Parthasarathy, S., Quinn, M. T., Schwenke, D. C., Carew, T. E. & Steinberg, D. (1989). Oxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation. Arteriosclerosis 9 398404.Google Scholar
Patsch, J. R. (1994). Triglyceride-rich lipoproteins and atherosclerosis. Atherosclerosis 110, S22S26.Google Scholar
Patsch, J. R., Miesenbock, G., Hopferwieser, T., Muhlherger, V., Knapp, E. & Dunn, J. K. (1992). Relation of triglyceride metabolism and coronary artery disease. Arteriosclerosis & Thrombosis 12, 13361345.Google Scholar
Peel, A. S., Zampelas, A., Gould, B. J., Ah-Sing, E., Chakraborty, J. C., Howland, R. J. & Williams, C. M. (1993). Measurement of apolipoprotein B-48 with a novel specific antibody reveals two peaks of intestinal origin. Proceedings of the Nutrition Society 52, 289A.Google Scholar
Sethi, S., Gibney, M. & Williams, C. M. (1993). Postprandial lipoprotein metabolism. Nutrition Research Reviews 6, 161183.CrossRefGoogle ScholarPubMed
Sniderman, A. D., Cianflone, K., Summers, L., Fielding, B. & Frayn, K. (1997). The acylation-stimulating protein pathway amd regulation of postprandial metabolism. Proceedings of the Nutrition Society, 56, 703712.Google Scholar
Uiterwaal, C. S. P. M., Grobbee, D. E., Witteman, J. C. M., van Stiphout, W.-A. H. J., Krauss, X. H., Havekes, L. M., de Bruin, A. M., van Tol, A. & Hofman, A. (1994). Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis. Annals of Internal Medicine 121, 576583.Google Scholar
van Heek, M. & Zilversmit, D. B. (1990). Postprandial lipemia and lipoprotein lipase in the rabbit are modified by olive and coconut oil. Arteriosclerosis 10, 421429.Google Scholar
Weintraub, M. S., Zechner, R., Brown, A., Eisenberg, S. & Breslow, J. (1988). Dietary polyunsaturated fats of the ω6 and ω3 series reduce postprandial lipoprotein levels. Journal of Clinical Investigation 82, 18841893.Google Scholar
Williams, C. M., Moore, F., Morgan, L. & Wright, J. (1992). Effects of n-3 fatty acids on postprandial triglyceride and hormone concentrations in normal subjects. British Journal of Nutrition 68, 655666.Google Scholar
Williams, C. M., Zampelas, A., Jackson, K. G., Gould, B. J., Wright, J., Kafatos, A. & Kapsokephalou, M. (1995). Postprandial triacylglycerol responses to meals of varying monounsaturated fatty acid content in UK and Greek subjects. Atherosclerosis 115 S46.Google Scholar
Yahia, N., Songhurst, C. & Sanders, T. A. B. (1996). Effect of different patterns of fat intake on postprandial lipaemia and factor VII coagulant activity. Proceedings of the Nutrition Society 55, 227A.Google Scholar
Zampelas, A., Culvervell, C. C., Knapper, J. M. E., Jackson, K., Gould, B. J., Wright, J. & Williams, C. M. (1994 a). Olive oil and postprandial lipaemia: A study on the effect of meals of different olive oil content on postprandial lipid levels in healthy men. Proceedings of the Nutrition Society 54, 164A.Google Scholar
Zampelas, A., Knapper, J. M. E., Jackson, K. G., Culverwell, C. C., Wilson, J., Gould, B. J. & Williams, C. M. (1995). Postprandial triacylglycerol and apolipoprotein B-48 responses to meals of varying monounsaturated fatty acid content in young UK subjects. Atherosclerosis 115, S46.Google Scholar
Zampelas, A., Morgan, L. M., Murphy, M. & Williams, C. M. (1994 b). Effects of dietary fatty acid composition on postprandial insulin, GIP and lipoprotein lipase activity. European Journal of Clinical Nutrition 48, 2634.Google Scholar
Zampelas, A., Peel, A., Gould, B. J., Wright, J. & Williams, C. M. (1994 c). Polyunsaturated fatty acids of the n-6 and n-3 series: effects on postprandial lipid and apolipoprotein levels in healthy men. European Journal of Clinical Nutrition 48, 8896.Google Scholar
Zampelas, A., Roche, H., Kapsokefalou, M., Knapper, J. M. E., Jackson, K. G., Pentaris, E., Tornatis, M., Hatzis, C., Gibney, M. J., Kafatos, A., Gould, B. J., Wright, J. & Williams, C. M. (1997). Differences in postprandial lipaemic responses but not traditional plasma lipid coronary risk indicators between Northern and Southern Europeans. Atherosclerosis, Thrombosis and Vascular Biology (In the Press).Google Scholar