Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:20:34.625Z Has data issue: false hasContentIssue false

Postnatal growth of gut and muscle: competitors or collaborators

Published online by Cambridge University Press:  28 February 2007

P. J. Reeds
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, 1100 Bates, Houston, Texas 77030, USA
D. G. Burrin
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, 1100 Bates, Houston, Texas 77030, USA
T. A. Davis
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, 1100 Bates, Houston, Texas 77030, USA
M. L. Fiorotto
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, 1100 Bates, Houston, Texas 77030, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Comparative aspects of growth regulation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Attaix, D. E., Aurousseau, G., Bayle, D., Rosolowska-Huszcz, A., Manghebati, A. & Arnal, M. (1989). Influences of age and weaning on in vivo pancreatic protein synthesis in the lamb. Journal of Nutrition 119, 463470.CrossRefGoogle ScholarPubMed
Attaix, D. & Meslin, J.-C. (1991). Changes in small intestinal morphology and cell renewal in suckling, prolonged suckling and weaned lambs. American Journal of Physiology 261, R811R818.Google ScholarPubMed
Berseth, C. L. (1987). Enhancement of intestinal growth in neonatal rats by epidermal growth factor in milk. American Journal of Physiology 253, G662G665.Google ScholarPubMed
Burrin, D. G., “Davis, T. A., Fiorotto, M. L. & Reeds, P. J. (1991). Stage of development and fasting affect protein synthetic activity in the gastrointestinal tissues of suckling rats. Journal of Nutrition 121, 10991108.CrossRefGoogle ScholarPubMed
Burrin, D. G., Davis, T. A., Fiorotto, M. A. & Reeds, P. J. (1992 a). Hepatic protein synthesis in rats, the effects of stage of development and fasting. Pediatric Research 261, 13731380.Google Scholar
Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. (1990). Level of nutrition and visceral organ size and metabolic activity in sheep. British Journal of Nutrition 64, 439448.CrossRefGoogle ScholarPubMed
Burrin, D. G., Shulman, R. J., Reeds, P. J., Davis, T. A. & Gravit, K. R. (1992 b). Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. Journal of Nutrition 122, 12051213.CrossRefGoogle ScholarPubMed
Coward, W. A., Cole, T. J., Gerber, H., Roberts, S. B. & Fleet, I. (1982). Water turnover and milk intake. Pflügers Archives 393, 344347.CrossRefGoogle ScholarPubMed
Danielsen, E. M., Cowell, G. M., Noren, O. & Sjostrom, H. (1984). Biosynthesis of microvillar proteins. Biochemical Journal 221, 114.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Ingram, D. L., James, P. S. & Smith, M. W. (1983). Modification by diet and environmental temperature of enterocyte function in pig intestine. Journal of Physiology 341, 441452.CrossRefGoogle Scholar
Davis, T. A., Eiorotto, M. L., Burrin, D. G. & Reeds, P. J. (1991). The response of muscle protein synthesis to fasting in stickling and weaned rats. American Journal of Physiology 261, R1373R1380.Google Scholar
Davis, T. A., Fiorotto, M. L., Nguyen, H. V. & Reeds, P. J. (1989). Protein turnover in skeletal muscles of suckling rats. American Journal of Physiology 257, R1141R1146.Google ScholarPubMed
de Lange, C. F. M., Souffrant, W. B. & Sauer, W. C. (1990). Real ileal and amino acid digestibilities in feedstuffs from growing pigs as determined with the 15N-isotope dilution technique. Journal of Animal Science 68, 409418.CrossRefGoogle ScholarPubMed
DiMarco, O. N., Baldwn, R. L. & Calvert, C. C. (1987). Relative contribution of hyperplasia and hypertrophy to growth in cattle. Journal of Animal Science 65, 150159.CrossRefGoogle Scholar
Dudley, M. A., Nichols, B. L., Rosenberger, J., Perkinson, J. S & Reeds, P. J. (1992). Feeding status affects in vivo prosucrase Isomaltase processing in rat jejunum. Journal of Nutrition 122, 528534.CrossRefGoogle ScholarPubMed
Ferrell, C. L. & Koong, L. J. (1986). Influence of plane of nutrition on body composition, organ sue and energy utilization of Sprague-Dawley rats. Journal of Nutrition 116, 25252535.CrossRefGoogle Scholar
Ferrell, C. L., Koong, L. J. & Nienaber, J. A. (1986). Effect of previous nutrition on body composition and maintenance energy costs of growing lambs. British Journal of Nutrition 56, 595605.CrossRefGoogle ScholarPubMed
Fiorotto, M. L., Burrin, D. G., Perez, M. & Reeds, P. J. (1991). Intake and use of milk nutrients by rat pups suckled in small, medium or large litters. American Journal of Physiology 260, 11041113.Google ScholarPubMed
Francis, G. L., Upton, F. M., Ballard, F. J., McNeil, K. A. & Wallace, J. C. (1988). Insulin like growth factors 1 and 2 in bovine colostrum. Biochemical Journal 251, 95103.CrossRefGoogle ScholarPubMed
Garlick, P. J., Fern, M. & Preedy, V. R. (1983). The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rat. Biochemical Journal 210, 669676.CrossRefGoogle Scholar
Goldspink, D. F., Lewis, S. E. M. & Kelly, F. J. (1984). Protein synthesis during developmental growth of the small and large intestine of the rat. Biochemical Journal 217, 527535.CrossRefGoogle ScholarPubMed
Goodman, M. N. & Gomez, M. D. P. (1987). Decreased myofibrillar proteolysis after refeeding requires dietary protein or amino acids. American Journal of Physiology 253, E52E58.Google ScholarPubMed
Gregory, P. W., Gagnon, J., Essig, D. A., Reid, S. K., Prior, G. & Zak, R. (1990). Differential regulation of actin and myosin isozyme synthesis in functionally overloaded muscle. Biochemical Journal 265, 525532.CrossRefGoogle Scholar
Hall, R. A. & Widdowson, E. M. (1979). Response of the organs of rabbits to feeding during the first days after birth. Biology of the Neonate 35, 131139.CrossRefGoogle ScholarPubMed
Heird, W. C., Schwartz, S. M. & Hansen, I. H. (1984). Colostrum-induced enteric mucosal growth in beagle puppy. Pediatric Research 18, 512515.CrossRefGoogle Scholar
Henning, S. J. (1986). Development of the gastrointestinal tract. Proceedings of the Nutrition Society 45, 3944.CrossRefGoogle ScholarPubMed
James, W. P. T., Alpers, D. H., Gerber, J. E. & Isselbacher, K. J. (1971). The turnover of disaccharidases and brush border proteins in rat intestine. Biochimica et Biophysica Acta 230, 194203.CrossRefGoogle ScholarPubMed
Kayali, A. G., Young, V. R. & Goodman, M. N. (1987). Sensitivity of myofibrillar proteins to glucocorticoidinduced muscle proteolysis. American Journal of Physiology 252, E621E626.Google ScholarPubMed
Klagsbrun, M. (1978). Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts. Proceedings of the National Academy of Sciences, USA 75, 50575061.CrossRefGoogle ScholarPubMed
Koong, L. J., Nienaber, J. A. & Mersman, H. J. (1983). Effects of plane of nutrition on organ size and fasting heat production in genetically lean and obese pigs. Journal of Nutrition 113, 16261631.CrossRefGoogle Scholar
Lobley, G. E. (1991). Organ and tissue metabolism, present status and future trends. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 58, pp. 8087 [Wenk, C. and Boessinger, M. editors]. Zurich: Institute für Nutztierwissenschaften, ETH-Zurich.Google Scholar
Lobley, G. E., Milne, V., Lovie, J., Reeds, P. J. & Pennie, K. (1980). Whole body and tissue protein synthesis in cattle. British Journal of Nutrition 43, 491502.CrossRefGoogle ScholarPubMed
Lowell, B. B., Ruderman, N. B. & Goodman, M. N. (1986). Regulation of myofibrillar protein degradation in rat skeletal muscle during brief and prolonged starvation. Metabolism 35, 11211127.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Fern, E. B. & Garlick, P. D. (1982). Failure of leucine to stimulate protein synthesis in vivo. Biochemical Journal 204, 831838.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
Nichols, B. L., McKee, I. S., Henry, J. F. & Putman, M. (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatric Research 21, 563567.CrossRefGoogle ScholarPubMed
Patureau-Mirand, P., Mosoni, L., Levieux, D., Attaix, D. & Bonnet, Y. (1991). Effect of colostrum feeding on protein metabolism in the small intestine of newborn lambs. Biology of the Neonate 57, 3036.CrossRefGoogle Scholar
Preedy, V. R. & Sugden, P. H. (1989). The effects of fasting or hypoxia on rates of protein synthesis in vivo in subcellular fractions of rat heart and gastrocnemius muscle. Biochemical Journal 257, 519527.CrossRefGoogle ScholarPubMed
Reeds, P. J. (1990). Amino acid needs and protein scoring patterns. Proceedings of the Nutrition Society 49, 1725.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F. & Nicholson, B. A. (1985). Metabolic basis of energy expenditure with particular reference to protein. In Substrate and Energy Metabolism in Man, pp. 4667 [Garrow, J. S. and Halliday, D. editors]. London: John Libbey and Son.Google Scholar
Sarkar, N. K., Lodge, G. A. & Friend, D. W. (1977). Hyperplastic and hypertrophic growth of the neonatal pig. Journal of Animal Science 46, 722728.CrossRefGoogle Scholar
Seve, B., Reeds, P. J., Fuller, M. F., Cadenhead, A. & Hay, S. M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early-weaning. Possible connection to the energy metabolism. Reproduction Nutrition and Development 26, 849861.CrossRefGoogle Scholar
Simon, O., Bergner, H., Munchmeyer, R. & Zebrowska, T. (1982). Studies on the range of tissue protein synthesis in pigs, the effect of thyroid hormones. British Journal of Nutrition 48, 571582.CrossRefGoogle ScholarPubMed
Smith, O. L. K., Wong, C. Y. & Gelfand, R. A. (1989). Skeletal muscle proteolysis in rats with acute streptozocin-induced diabetes. Diabetes 38, 11171122.CrossRefGoogle ScholarPubMed
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985). Differences in intestinal protein synthesis and cell proliferation in well-nourished rats consuming conventional laboratory diets. British Journal of Nutrition 53, 8795.CrossRefGoogle ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Whalen, R. G., Schwartz, K., Bouveret, P., Sell, S. M. & Gros, F. (1979). Contractile protein isoforms in muscle development, identification of an embryonic form of myosin heavy chain. Proceedings of the National Academy of Sciences, USA 76, 51975201.CrossRefGoogle ScholarPubMed
Widdowson, E. M., Colombo, V. E. & Artavanis, C. A. (1976). Changes in the organs of pigs in response to feeding for the first 24 h after birth. Biology of the Neonate 28, 272281.CrossRefGoogle Scholar
Yen, J. T., Nienaber, J. A. & Pond, W. G. (1989). Oxygen consumption by portal vein-drained organs and by the whole animal in conscious growing swine. Proceedings of the Society for Experimental Biology and Medicine 190, 393398.CrossRefGoogle ScholarPubMed