Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T21:52:00.923Z Has data issue: false hasContentIssue false

Molecular aspects of enzyme synthesis in the exocrine pancreas with emphasis on development and nutritional regulation

Published online by Cambridge University Press:  28 February 2007

Isabelle Le Huerou-Luron
Affiliation:
Laboratoire du Jeune Ruminant, INRA, 65 rue de Saint Brieuc, 35042 Rennes Cédex, France
Evelyne Lhoste
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif CRJ, INRA, Jouy-en-Josas, France
Catherine Wicker-Planquart
Affiliation:
Centre de Biochimie et de Biologie Moléculaire, CNRS, Marseille, France
Nadia Dakka
Affiliation:
Centre de Biochimie et de Biologie Moléculaire, CNRS, Marseille, France
René Toullec
Affiliation:
Laboratoire du Jeune Ruminant, INRA, 65 rue de Saint Brieuc, 35042 Rennes Cédex, France
Tristan Corring
Affiliation:
Laboratoire d'Ecologie et de Physiologie du Système Digestif CRJ, INRA, Jouy-en-Josas, France
Paul Guilloteau
Affiliation:
Laboratoire du Jeune Ruminant, INRA, 65 rue de Saint Brieuc, 35042 Rennes Cédex, France
Antoine Puigserver
Affiliation:
Centre de Biochimie et de Biologie Moléculaire, CNRS, Marseille, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Bazin, R., Lavau, M. & Herzog, J. (1978). Pancreatic lipase and ketogenic conditions. Biomedicine 28, 160165.Google ScholarPubMed
Ben Abdeljlil, A. & Desnuelle, P. (1964). Sur l'adaptation des enzymes exocrines du pancréas à la composition du régime (The adaptation of the exocrine enzymes of rat pancreas to the composition of the diet). Biochemica et Biophysica Acta 81, 136149.Google Scholar
Ben Abdeljlil, A., Visani, A. M. & Desnuelle, P. (1963). Adaptation of the exocrine secretion of rat pancreas to the composition of the diet. Biochemical and Biophysical Research Communications 10, 112116.CrossRefGoogle Scholar
Boulet, A. M., Erwin, C. R. & Rutter, W. J. (1986). Cell-specific enhancers in the rat exocrine pancreas. Proceedinsgs of the National Academy of Sciences, U.S.A. 83, 35993603.CrossRefGoogle ScholarPubMed
Brannon, P. M. (1990). Adaptation of the exocrine pancreas to diet. Annual Review of Nutrition 10, 85105.CrossRefGoogle ScholarPubMed
Clauser, E., Gardell, S. J., Craik, C. S., MacDonald, R. J. & Rutter, W. J. (1988). Structural characterization of the rat carboxypeptidase A1 and B genes. Comparative analysis of the rat carboxypeptidase gene family. Journal of Biological Chemistry 263, 1783717845.CrossRefGoogle Scholar
Corring, T. (1977). Possible role of hydrolysis products of the dietary components in the mechanisms of the exocrine pancreatic adaptation to the diet. World Review of Nutrition and Dietetics 27, 132144.Google Scholar
Corring, T. & Aumaître, A. (1970). Mise en place et évolution de l'équipement enzymatique du pancréas exocrine du jeune rat pédant la période embryonnaire, l'allaitement et le sevrage (Formation and development of the enzyme apparatus of the exocrine pancreas of young rats in the embryonic stage and during the sucking and weaning periods). Annales de Biologie Animale Biochimie Biophysique 10, 431441.CrossRefGoogle Scholar
Corring, T., Aumaître, A. & Durand, G. (1978). Development of digestive enzymes in the piglet from birth to 8 weeks. I. Pancreas and pancreatic enzymes. Nutrition and Metabolism 22, 231243.CrossRefGoogle Scholar
Corring, T., Calmes, R., Rérat, A. & Gueugneau, A. M. (1984). Effets de l'alimentation protéiprive à court terme sur la sécrétion d'azote endogène: sécrétion pancréatique exocrine chez le porc (Effect of short term feeding of a protein-free diet on endogenous nitrogen secretion: exocrine pancreas secretion in the pig). Reproduction, Nutrition, Développement 24, 495506.Google Scholar
Corring, T., Juste, C. & Lhoste, E. F. (1989). Nutritional regulation of pancreatic and biliary secretions. Nutrition Research Reviews 2, 161180.CrossRefGoogle ScholarPubMed
Dakka, N., Puigserver, A. & Wicker, C. (1990). Regulation by a protein-free carbohydrate-rich diet of rat pancreatic mRNAs encoding trypsin and elastase isoenzymes. Biochemical Journal 268, 471474.CrossRefGoogle ScholarPubMed
Dakka, N., Wicker, C. & Puigserver, A. (1988). Specific response of serine protease mRNA to a protein-free diet in the rat pancreas. European Journal of Biochemistry 176, 231236.CrossRefGoogle ScholarPubMed
Davicco, M. J., Le Faivre, J. & Barlet, J. P. (1980). The endocrine regulation of exocrine pancreas in preruminant milk-fed calves. Annales de Recherches Vétérinaires 11, 123132.Google ScholarPubMed
Deschodt-Lanckman, M., Robberecht, P., Camus, J. & Christophe, J. (1971). Short-term adaptation of pancreatic hydrolases to nutritional and physiological stimuli in adult rats. Biochimie 53, 789796.CrossRefGoogle ScholarPubMed
Gardell, S. J., Craik, C. S., Clauser, E., Goldsmith, E. J., Stewart, C. B., Graf, M. & Rutter, W. J. (1988). A novel rat carboxypeptidase, CPA2: Characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family. Journal of Biological Chemistry 263, 1782817836.CrossRefGoogle ScholarPubMed
Giorgi, D., Bernard, J. P., Lapointe, R. & Dagorn, J. C. (1984). Regulation of amylase messenger RNA concentration in rat pancreas by food content. EMBO Journal 3, 15211524.CrossRefGoogle ScholarPubMed
Giorgi, D., Renaud, W., Bernard, J. P. & Dagorn, J. C. (1985). Regulation of proteolytic enzyme activities and mRNA concentrations in rat pancreas by food content. Biochemical and Biophysical Research Communications 127, 937942.Google Scholar
Girard-Globa, A. & Simond-Cote, E. (1977). Nutritional and circadian variations in lipase activity and colipase saturation in rat pancreas. Annales de Biologie Animale Biochimie Biophysique 17, 539542.Google Scholar
Guilloteau, P., Le Huërou-Luron, I., Chayvialle, J. A., Mouats, A., Bernard, C., Cuber, J. C., Burton, J., Puigserver, A. & Toullec, R. (1992). Plasma and tissue levels of digestive regulatory peptides during postnatal development and weaning in the calf. Reproduction, Nutrition, Development 32, 285296.Google Scholar
Han, J. H., Rall, L. & Rutter, W. J. (1986). Selective expression of rat pancreatic genes during embryonic development. Proceedings of the National Academy of Sciences, U.S.A. 83, 110114.Google Scholar
Harding, J. D., MacDonald, R. J., Przybyla, A. E., Chirgwin, J. M., Pictet, R. L. & Rutter, W. J. (1977). Changes in the frequency of specific transcripts during development of the pancreas. Journal of Biological Chemistry 252, 73917397.Google Scholar
Henning, S. J. (1987). Functional development of the gastrointestinal tract. In Physiology of the Gastro-intestinal Tract, 2nd ed., pp. 285300 [Johnson, L. R. editor]. New York: Raven Press.Google Scholar
Howard, F. & Yudkin, J. (1963). Effect of dietary change upon amylase and trypsin activities of the rat pancreas. British Journal of Nutrition 17, 281294.Google Scholar
Howard, G., Keller, P. R., Johnson, T. M. & Meisler, M. H. (1989). Binding of a pancreatic nuclear protein is correlated with amylase enhancer activity. Nucleic Acids Research 17, 81858195.Google Scholar
Iovanna, J. L., Dusetti, N., Cadenas, B. & Calvo, E. L. (1990). Changes in growth and pancreatic mRNA concentrations during postnatal development of rat pancreas. Pancreas 5, 421426.Google Scholar
Johnson, A., Hurwitz, R. & Kretchmer, N. (1977). Adaptation of rat pancreatic amylase and chymotrypsinogen to changes in diet. Journal of Nutrition 107, 8796.Google Scholar
Kawashima, I., Tani, T., Shimoda, K. & Takiguchi, Y. (1987). Characterization of pancreatic elastase II cDNAs: Two elastase II mRNAs are expressed in human pancreas. DNA 6, 163172.Google Scholar
Keller, S. A., Rosenberg, M. P., Johnson, T. M., Howard, G. & Meisler, M. H. (1990). Regulation of amylase gene expression in diabetic mice is mediated by a cis-acting upstream element close to the pancreas-specific enhancer. Gene and Development 4, 13161321.CrossRefGoogle Scholar
Kern, H. F., Rausch, U. & Scheele, G. (1987). Regulation of gene expression in pancreatic adaptation to nutritional substrates or hormones. Gut 28, 8994.CrossRefGoogle ScholarPubMed
Lavau, M., Bazin, R. & Herzog, J. (1974). Comparative effects of oral and parenteral feeding on pancreatic enzymes in the rat. Journal of Nutrition 104, 14321437.CrossRefGoogle ScholarPubMed
Le Huërou, I., Guilloteau, P., Toullec, R., Puigserver, A. & Wicker, C. (1991). Cloning and nucleotide sequence of a bovine pancreatic preprocarboxypeptidase A cDNA. Biochemical and Biophysical Research Communications 175, 110116.Google Scholar
Le Huërou, I., Wicker, C., Guilloteau, P., Toullec, R. & Puigserver, A. (1990 a). Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity within the trypsin family. European Journal of Biochemistry 193, 767773.Google Scholar
Le Huërou, I., Wicker, C., Guilloteau, P., Toullec, R. & Puigserver, A. (1990 b). Specific regulation of the gene expression of some pancreatic enzymes during postnatal development and weaning in the calf. Biochimica et Biophysica Acta 1048, 257264.Google Scholar
Le Huërou-Luron, I., Guilloteau, P., Wicker-Planquart, C., Chayvialle, J. A., Burton, J., Mouats, A., Toullec, R. & Puigserver, A. (1992). Gastric and pancreatic enzyme activities and their relationship with some gut regulatory peptides during postnatal development and weaning in calves. Journal of Nutrition 122, 14341445.Google Scholar
Le Meuth, V., Farjaudon, N., Bawab, W., Chastre, E., Rosselin, G., Guilloteau, P. & Gespach, C. (1991). Characterization of binding sites for VIP-related peptides and activation of adenylate cyclase in developing pancreas. American Journal of Physiology 260, G265G274.Google Scholar
Le Meuth, V., Philouze, V., Formal, M., Le Huërou-Luron, I., Vaysse, N., Gespach, C., Guilloteau, P. & Fourmy, D. (1992). Pharmacological and biochemical evidence for differential expression of A- and B-subtype CCK/gastrin receptors in the calf pancreas during development. Proceedings of the Nutrition Society 52, 170A.Google Scholar
Lhoste, E. F., Fiszlewicz, M., Gueugneau, A. M., Wicker-Planquart, C., Puigserver, A. & Corring, T. (1993). Effects of dietary proteins on some pancreatic mRNAs encoding digestive enzymes in the pig. Journal of Nutritional Biochemistry 4, 143152.Google Scholar
Logsdon, C. D., Akana, S. F., Meyer, C., Dallman, M. F. & Williams, J. A. (1987). Pancreatic acinar cell amylase gene expression: Selective effects of adrenalectomy and corticosterone replacement. Endocrinology 121, 12421250.Google Scholar
MacDonald, R. J., Stary, S. J. & Swift, G. H. (1982 a). Two similar but nonallelic rat pancreatic trypsinogens. Journal of Biological Chemistry 257, 97249732.CrossRefGoogle ScholarPubMed
MacDonald, R. J., Swift, G. H., Quinto, C., Swain, W., Pictet, R. L., Nikovits, W. & Rutter, W. J. (1982 b). Primary structure of two distinct rat pancreatic proelastases determined by sequence analysis of the complete cloned messenger ribonucleic acid sequences. Biochemistry 21, 14531463.CrossRefGoogle Scholar
Mourot, J. & Corring, T. (1979). Adaptation of the lipase-colipase system to dietary lipid content in pig pancreatic tissue. Annales de Biologie Animale Biochimie Biophysique 19, 119124.Google Scholar
Osborn, L., Rosenberg, M. P., Keller, S. A. & Meisler, M. H. (1987). Tissue-specific and insulin-dependent expression of the amylase gene in transgenic mice. Molecular and Cellular Biology 7, 326334.Google Scholar
Pascual, R., Vendrell, J., Avilés, F. X., Bonicel, J., Wicker, C. & Puigserver, A. (1990). Autolysis of proproteinase E in bovine procarboxypeptidase A ternary complex gives rise to subunit III. FEBS Letters 277, 3741.CrossRefGoogle ScholarPubMed
Pictet, R. L., Clark, W. R., Williams, R. H. & Rutter, W. J. (1972). An ultrastructural analysis of the developing embryonic pancreas. Developmental Biology 29, 436467.Google Scholar
Pierzynowski, S. G., Hakansson, H., Ljunggren, L., Martensson, L. & Olsson, L. (1990). Portable closed loop feedback system for control of the blood glucose level in the pig. Artificial Organs 14, 118129.Google Scholar
Pinsky, S. D., LaForge, K. S. & Scheele, G. (1985). Differential regulation of trypsinogen mRNA translation: Full-length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas. Molecular and Cellular Biology 5, 26692676.Google Scholar
Pond, W. G., Snook, J. T., McNeill, D., Snyder, W. I. & Stillings, B. R. (1971). Pancreatic enzyme activities of pigs up to three weeks of age. Journal of Animal Science 33, 12701273.Google Scholar
Poort, S. R. & Poort, C. (1981). Effect of feeding diets of different composition on the protein synthesis pattern of the rat pancreas. Journal of Nutrition 111, 14751479.Google Scholar
Puigserver, A., Wicker, C. & Gaucher, C. (1986). Adaptation of pancreatic and intestinal hydrolases to dietary changes. In Molecular and Cellular Basis of Digestion, pp. 113124 [Desnuelle, P. Sjöström, H. and Noren, O. editors]. Amsterdam: Elsevier Science Publishers B. V., Biomedical Division.Google Scholar
Reboud, J. P., Marchis-Mouren, G., Pasero, L., Cozzone, A. & Desnuelle, P. (1966). Adaptation de la vitesse de biosynthèse de l'amylase pancréatique et du chymotrypsinogène à des régimes riches en amidon ou en protéines (Adaptation of the rate of biosynthesis of pancreatic amylase and chymotrypsinogen to starch-rich or protein-rich diets). Biochimica et Biophysica Acta 117, 351367.Google Scholar
Reboud, J. P., Pasero, L. & Desnuelle, P. (1964). On chymotrypsinogen and trypsinogen biosynthesis by pancreas of rats fed on a starch-rich diet or a casein-rich diet. Biochemical and Biophysical Research Communications 17, 347351.CrossRefGoogle Scholar
Robberecht, P., Deschodt-Lankman, M., Camus, J., Bruylands, J. & Christophe, J. (1971). Rat pancreatic hydrolases from birth to weaning and dietary adaptation after weaning. American Journal of Physiology 221, 376381.Google Scholar
Ruckebusch, Y., Dardillat, C. & Guilloteau, P. (1983). Development of digestive functions in the newborn ruminant. Annales de Recherches Vétérinaires 14, 360374.Google Scholar
Rutter, W. J., Kemp, J. D., Bradshaw, W. S., Clark, W. R., Ronzio, R. A. & Sanders, T. G. (1968). Regulation of specific protein synthesis in cytodifferentiation. Journal of Cellular Physiology 72, Suppl. 1, 118.Google Scholar
Sabb, J. E., Godfrey, P. M. & Brannon, P. M. (1986). Adaptive response of rat pancreatic lipase to dietary fat: Effects of amount and type of fat. Journal of Nutrition 116, 892899.CrossRefGoogle ScholarPubMed
Samuelson, L. C., Keller, P. R., Darlington, G. J. & Meisler, M. H. (1988). Glucocorticoid and developmental regulation of amylase mRNAs in mouse liver cells. Molecular and Cellular Biology 8, 38573863.Google Scholar
Saraux, B. & Girard-Globa, A. (1982). Development of pancreatic enzymes in fetal and suckling rats with emphasis on lipase and colipase. Journal of Developmental Physiology 4, 121137.Google Scholar
Saraux, B., Girard-Globa, A., Ouagued, M. & Vacher, D. (1982). Response to the exocrine pancreas to quantitative and qualitative variations in dietary lipids. American Journal of Physiology 243, G10G15.Google Scholar
Schick, J., Verspohl, R., Kern, H. & Scheele, G. (1984). Two distinct adaptive responses in the synthesis of exocrine pancreatic enzymes to inverse changes in protein and carbohydrate in the diet. American Journal of Physiology 247, G611G616.Google Scholar
Schmid, R. M. & Meisler, M. H. (1992). Dietary regulation of pancreatic amylase in transgenic mice is mediated by a 126-base pair DNA fragment. American Journal of Physiology 262, G971G976.Google Scholar
Simoes-Nunes, C. (1986). Adaptation of pancreatic lipase to the amount and nature of dietary lipids in the growing pig. Reproduction, Nutrition, Développement 26, 12731280.Google Scholar
Snook, J. T. (1965). Dietary regulation of pancreatic enzyme synthesis, secretion and inactivation in the rat. Journal of Nutrition 87, 297305.Google Scholar
Stevenson, B. J., Hagenbüchle, O. & Wellauer, P. K. (1986). Sequence organisation and transcriptional regulation of the mouse elastase II and trypsin genes. Nucleic Acids Research 14, 83078330.Google Scholar
Stratowa, C. & Rutter, W. J. (1986). Selective regulation of trypsin gene expression by calcium and by glucose starvation in a rat exocrine pancreas cell line. Proceedings of the National Academy of Sciences, U.S.A. 83, 42924296.CrossRefGoogle Scholar
Swift, G. H., Hammer, R. E., MacDonald, R. J. & Brinster, R. L. (1984). Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice. Cell 38, 639646.Google Scholar
Takeuchi, T., Ogawa, M. & Sugimura, T. (1977). Effects of various hormones and adrenalectomy on the levels of amylase in rat pancreas and parotid gland. Experientia 66, 15311532.CrossRefGoogle Scholar
Temler, R. S., Dormond, C. A., Simon, E., Morel, B. & Mettraux, C. (1984). Response of rat pancreatic proteases to dietary proteins, their hydrolysates and soybean trypsin inhibitor. Journal of Nutrition 114, 270278.Google Scholar
Track, N. S., Bockermann, M., Creutzfeldt, C., Schmidt, H. & Creutzfeldt, W. (1972). Enzymatic and ultrastructural development of bovine exocrine panćreas. Comparative Biochemistry and Physiology 43, 313322.Google Scholar
Van Nest, G. A., MacDonald, R. J., Roman, R. K. & Rutter, W. J. (1980). Proteins synthetized and secreted during rat pancreatic development. Journal of Cell Biology 86, 784794.Google Scholar
Vandermeers-Piret, M. C., Vandermeers, A., Wijns, W., Rathe, J. & Christophe, J. (1977). Lack of adaptation of pancreatic colipase in rats and mice. American Journal of Physiology 232, E131E135.Google Scholar
Walker, M. D., Edlund, T., Boulet, A. M. & Rutter, W. J. (1983). Cell-specific expression controlled by the 5'-flanking region of insulin and chymotrypsin genes. Nature 306, 557561.Google Scholar
Wicker, C. & Puigserver, A. (1987). Effects of some inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory proteins. European Journal of Biochemistry 162, 2530.Google Scholar
Wicker, C. & Puigserver, A. (1989). Changes in mRNA levels of rat pancreatic lipase in the early days of consumption of a high-lipid diet. European Journal of Biochemistry 180, 563567.Google Scholar
Wicker, C. & Puigserver, A. (1990 a). Rat pancreatic colipase mRNA: Nucleotide sequence of a cDNA clone and nutritional regulation by a lipidic diet. Biochemical and Biophysical Research Communications 167, 130136.Google Scholar
Wicker, C. & Puigserver, A. (1990 b). Expression of a rat pancreatic lipase gene is modulated by a lipid-rich diet at a transcriptional level. Biochemical and Biophysical Research Communications 166, 358364.Google Scholar
Wicker, C., Puigserver, A. & Scheele, G. (1984). Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas. European Journal of Biochemistry 139, 381387.Google Scholar
Wicker, C., Scheele, G. & Puigserver, A. (1983). Adaptation au régime alimentaire du niveau des ARNm codant pour l'amylase et les protéases à sérine pancréatiques chez le rat (Dietary adaptation of levels of mRNA coding for pancreatic amylase and serine proteases in the rat). Compte Rendu de l'Académie des Sciences de Paris, Série D Sciences Naturelles 297, 281284.Google Scholar
Wicker, C., Scheele, G. A. & Puigserver, A. (1988). Pancreatic adaptation to dietary lipids is mediated by changes in lipase mRNA. Biochimie 70, 12771283.Google Scholar
Wicker-Planquart, C. & Puigserver, A. (1992). Primary structure of rat pancreatic lipase mRNA. FEBS Letters 296, 6166.CrossRefGoogle ScholarPubMed