Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-11T23:07:29.747Z Has data issue: false hasContentIssue false

Micronutrients and ageing: intakes and requirements

Published online by Cambridge University Press:  28 February 2007

Marie-Jeanne Richard*
Affiliation:
LBSO, Biochimie C, Hopital Albert Michallon, BP217 X, 38043 Grenoble Cedex 09, France
Anne-Marie Roussel
Affiliation:
LBSO, Biochimie C, Hopital Albert Michallon, BP217 X, 38043 Grenoble Cedex 09, France
*
*Corresponding Author: Dr Marie-Jeanne Richard, fax +33 4 76 76 56 64, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ageing (and related diseases) may be described as a process which results from impaired immunological, genetic, neurological or endocrinological functions. Oxidative mechanisms may play an important role in the ageing process. It is important, therefore, to emphasize the relationship between health and nutrition in the elderly, particularly with regard to antioxidant micronutrient requirements. Indeed, accelerated ageing may be related to a deficit in the intakes of antioxidant vitamins (tocopherols, carotenoids and vitamin C) and trace elements (Zn and Se), as well as to an impaired adaptative mechanism against oxidative stress. Physiological modifications occurring during the lifetime and environmental influences are significant factors contributing to the impairment of micronutrient status, and these factors have to be considered when defining the specific requirements of the elderly. For Fe there is no evidence of benefit of supplementation in healthy subjects, but in the present state of knowledge combined supplementation, including Zn, Se, vitamins C and E and carotenoids, could be the best way to prevent accelerated ageing and reduce the risk of several common age-related diseases. Résumé De nombreuses théories (immunologique, génétique et neuroendocrinologique) ont été proposées pour expliquer les processus de vieillissement et les pathologies qui s’y rapportent. Les mécanismes oxydatifs pourraient contribuer à ces processus et plus particulièrement à leur accélération. La théorie radicalaire repose sur une modification avec l’âge du rapport prooxydants ou antioxydants dû à une majoration des processus oxydatifs accompagnés d’une diminution des systèmes de défense subséquentes à une carence en un ou plusieurs micronutriments antioxydants. Les modifications physiologiques qui accompagnent le vieillisement et une alimentation sélective contribuent aux modifications d’apport et d’absorption des micronutriments. Ces altérations sont accentuées lors de pathologies chroniques. Il n’existe pas de réel consensus sur les recommandations d’apports en oligoéléments adaptés au sujet âgé. Néanmoins les études récentes montrent qu’une association zinc, sélénium, vitamines antioxydantes (vitamines A et E et caroténodes) pourrait être le moyen le plus efficace de lutte contre les pathologies du grand âge et également de prévention du vieillissement accéléré.

Type
Symposium on ‘Functionality of nutrients and food safety’
Copyright
Copyright © The Nutrition Society 1999

References

Ascherio, A, Willett, WC, Rimm, EB, Giovannucci, EL & Stampfer, M (1994) Dietary iron intake and risk of coronary disease among men. Circulation 89, 969974.Google Scholar
Berr, C, Richard, MJ, Roussel, AM, Bonithon-Kopp, C & The EVA Study Group (1998) Systemic oxidative stress and cognitive performance in the population-based EVA study. Free Radicals in Biology and Medicine 24, 12021208.Google Scholar
Bogden, JD, Bendich, A & Kemp, FW (1994) Daily micronutrient supplements enhance delayed type hypersensitivity skin test responses in older people. American Journal of Clinical Nutrition 60, 437447.CrossRefGoogle ScholarPubMed
Bortoli, A, Fazzini, G, Marchioni, M, Mello, F, Grugiolo, R & Martelli, F (1991) Selenium status and effect of selenium supplementation in a group of elderly women. Journal of Trace Elements and Electrolytes in Health and Disease 5, 1921.Google Scholar
Boukaiba, N, Flament, C & Acher, S (1993) A physiological amount of zinc supplementation effects on nutritional, lipid, and thymic status in an elderly population. American Journal of Clinical Nutrition 57, 566572.CrossRefGoogle Scholar
Bray, TM & Bettger, WJ (1990) The physiological role of zinc as an antioxidant. Free Radicals in Biology and Medicine 8, 281291.Google Scholar
Bremner, I & Davies, NT (1975) The induction of metallothionein in rat liver by zinc injection and restriction of food intake. Biochemical Journal 149, 733738.CrossRefGoogle ScholarPubMed
Bunker, VW & Clayton, BE (1989) Research review. Studies in the nutrition of elderly people with particular reference to essential trace elements. Age and Ageing 18, 422429.CrossRefGoogle ScholarPubMed
Ceballos-Picot, I, Trivier, JM, Nicole, A, Sinet, PM & Thevenin, M (1992) Age correlated modifications of copper-zinc superoxide dismutase and glutathione related enzymes activities in human erythrocytes. Clinical Chemistry 38, 6670.CrossRefGoogle ScholarPubMed
Chow, CK (1991) Vitamin E and oxidative stress. Free Radicals in Biology and Medicine 11, 215232.Google Scholar
Coudray, C, Richard, MJ, Laporte, F, Faure, P, Roussel, AM & Favier, A (1992) Superoxide dismutase activity and zinc status: a study in animals and man. Journal of Nutritional Medicine 3, 1326.CrossRefGoogle Scholar
Coudray, C, Roussel, AM, Mainard, F, Arnaud, J & Favier, A (1997) Lipid peroxidation level and micronutrient status in a pre-aging population: Correlation with chronic disease prevalence in a French epidemiological study. Journal of the American College of Nutrition 16, 584591.Google Scholar
Cutler, RG (1985) Antioxidants and longevity of mammalian species. In Molecular Biology of Aging, pp. 1573 [Woodhead, AD, Blackette, AD and Hollaender, A, editors]. New York: Plenum Press.Google Scholar
Ducros, V, Faure, P, Ferry, M, Couzy, F, Biajoux, I & Favier, A (1997) The sizes of the exchangeable pools of selenium in elderly women and their relation to institutionalization. British Journal of Nutrition 78, 379396.CrossRefGoogle ScholarPubMed
Dupin, H, Abraham, J & Giachetti, I (1992) Apports Nutritionnels Conseillés pour la Population Française (Nutrient Requirements of Adults and Recommended Intakes to Meet these Requirements). 2nd ed. Paris: Technique et Documentation Lavoisier.Google Scholar
Euronut Seneca Investigators (1991) Intakes of vitamins and minerals. European Journal of Clinical Nutrition 45, Suppl. 3, 121138.Google Scholar
Favier, A (1994) Zinc et vieillissement (Zinc and ageing). Age et Nutrition 5, 4864.Google Scholar
Galan, P, Preziosi, P, Richard, MJ, Monget, AL, Arnaud, J, Lesourd, B, Favier, A, Girodon, P, Bourgeois, CF, Keller, H & Hercberg, S (1994) Biological and immunological effects of trace elements and/or vitamin supplementation in the elderly. In Trace Elements and Free Radicals in Oxidative Diseases, pp. 197222 [Favier, A, Neve, J and Faure, P, editors]. Champaign, IL: AOCS Press.Google Scholar
Girodon, F, Blache, D, Monget, AL, Lombart, M, Brunet, P, Arnaud, J, Richard, MJ & Galan, P (1997 a) Effect of a two year supplementation with low doses of antioxidant vitamins and/or minerals in elderly subjects on levels of nutrients and antioxidant defense parameters. Journal of the American College of Nutrition 16, 357365.Google Scholar
Girodon, F, Lombard, M, Galan, P, Brunet-Lecomte, P, Monget, AL, Arnaud, J, Preziosi, P & Hercberg, S (1997 b) Effect of micronutrient supplementation on infection in institutionalized elderly subjects: a controlled trial. Annals of Nutrition and Metabolism 41, 98107.CrossRefGoogle ScholarPubMed
Guigoz, Y (1994) Recommended daily allowances (RDA) for the free-living elderly. Fact and Research in Gerontology Suppl. 2, 113143.Google Scholar
Hallfrish, J, Muller, DC & Singh, VN (1994) Vitamin A and E intakes and plasma concentrations of retinol, β-carotene, and α-tocopherol in men and women of the Baltimore longitudinal study of aging. American Journal of Clinical Nutrition 60, 176182.Google Scholar
Harman, D (1995) Role of antioxidant nutrients in aging: an overview. Age 18, 5162.CrossRefGoogle Scholar
Hassan, HM (1988) Biosynthesis and regulation of superoxide dismutases. Free Radicals in Biology and Medicine 5, 377385.Google Scholar
Hercberg, S, Preziosi, P, Galan, P, Deheeger, M, Papoz, L & Dupin, H (1991) Apports nutritionnels d’un échantillon représentatif de la population du Val de Marne: III Les apports en minéraux et vitamines (Nutrient intakes of a representative sample of the population of Val de Marne: III Mineral and vitamin intakes). Revue de l’Epidemiologie et de la Santé Publique 39, 245261.Google Scholar
Heseker, H & Schneider, R (1994) Requirements and supply of vitamin C, E, β-carotene for elderly men and women. European Journal of Clinical Nutrition 48, 118127.Google ScholarPubMed
Johnson, MA, Fisher, JG, Bowman, BA & Gunter, EW (1994) Iron nutriture in elderly individuals. FASEB Journal 8, 609621.Google Scholar
Kikerby, OJ, Fossum, S & Riscone, C (1991) Anaemia in elderly patients. Scandinavian Journal of Primary Health Care 9, 167171.Google Scholar
Knight, JA (1995) The process and theory of aging. Annals of Clinical and Laboratory Science 25, 1112.Google Scholar
MacKenzie, R, Rafferty, T & Beckett, G (1998) Selenium: an essential element for immune function. Immunology Today 19, 342345.CrossRefGoogle Scholar
Mertz, W (1990) The role of trace elements in the aging process. Progress in Clinical and Biological Research 326, 229240.Google Scholar
Monget, AL, Galan, P, Preziosi, P, Keller, H, Bourgeois, C, Arnaud, J, Favier, A & Hercberg, S (1996 a) Micronutrient status in elderly people. Geriatrie/Min VitAox Network. International Journal of Vitamin and Nutrition Research 66, 7176.Google Scholar
Monget, AL, Richard, MJ, Cournot, MP, Arnaud, J, Galan, P, Preziosi, P, Herbeth, B, Favier, A, Hercberg, S & The Geriatrie/MinVitAox Network (1996 b) Effect of 6 month supplementation with different combinations of an association of antioxidant nutrients on biochemical parameters and markers of the antioxidant defence system in the elderly. European Journal of Clinical Nutrition 50, 443449.Google ScholarPubMed
Nakamura, T, Shiraishi, N & Aono, K (1987) Effects of in vitro and in vivo supplementation with zinc on superoxide anion production in leucocytes. Physiological Chemistry and Physics and Medical NMR 19, 147151.Google Scholar
National Research Council (1989) Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy Press.Google Scholar
Nelson, RL, Davis, FG, Sutter, E, Sobin, LH, Kikendhal, JW & Bowen, P (1994) Body iron stores and risk of colonic neoplasia. Journal of the National Cancer Institute 86, 455466.CrossRefGoogle ScholarPubMed
Neve, J (1989) Biological functions of selenium. In Selenium in Medicine and Biology, pp. 97111 [Neve, J and Favier, A, editors]. Berlin: Walter de Gruyter.Google Scholar
Neve, J, Vertongen, F, Peretz, A & Carpentier, YA (1989) Valeurs usuelles du sélénium et de la glutathion peroxydase dans une population belge (Everyday importance of selenium and glutathione peroxidase in the Belgian population). Annales de Biologie Clinique 47, 138143.Google Scholar
Olivieri, O, Stanziali, AM, Girelli, D, Trevisan, MT, Guarini, P, Terzi, M, Caffi, S, Fontana, F, Casaril, M, Ferrari, S & Corrocher, R (1994) Selenium status, fatty acids, vitamin A and E, and aging: the Nove Study. American Journal of Clinical Nutrition 60, 510517.Google Scholar
Parat, MO, Richard, MJ, Pollet, S, Hadjur, C, Favier, A & Beani, JC (1997) Zinc and DNA fragmentation in keratinocyte apoptosis: its inhibitory effect in UVB irradiated cells. Photochemistry and Photobiology 37, 101106.Google Scholar
Peretz, A, Neve, J, Desmedt, J, Duchateau, J, Dramaix, M & Famaey, JP (1991) Lymphocyte response is enhanced by supplementation of elderly people with selenium-enriched yeast. American Journal of Clinical Nutrition 53, 13231328.Google Scholar
Perry, D, Smyth, MJ, Stennicke, HR, Salvesen, GS, Duriez, P, Poirier, G & Hannun, Y (1997) Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. Journal of Biological Chemistry 271, 1853018533.CrossRefGoogle Scholar
Piperakis, SM, Visvardis, EE, Sagnou, M & Tassiou, AM (1998) Effects of smoking and aging on oxidative DNA damage of human lymphocytes. Carcinogenesis 19, 695698.Google Scholar
Podmore, I, Griffith, H, Herbert, K, Mistry, N, Mistry, P & Lunec, J (1998) Vitamin C exhibits pro-oxidant capacities. Nature 392, 558.CrossRefGoogle Scholar
RDA Workshop (1996) New approaches, end points and paradigms for RDAs of mineral elements. Journal of Nutrition 126, Suppl. 22992459.Google Scholar
Richard, MJ, Belleville, F, Chalas, J, Ceballos-Picot, I, Vitoux, D, Boyer, MJ, Chaudiere, J & Favier, A (1997) Les glutathion peroxydases: intérêt de leur dosage en biologie clinique (Glutathione peroxidases: value of their determination in clinical biology). Annales de Biologie Clinique 55, 195207.Google Scholar
Rossman, T & Goncharova, E (1998) Spontaneous mutagenesis in mammalian cells is caused mainly by oxidative events and can be blocked by antioxidants and metallothionein. Mutation Research 402, 103110.CrossRefGoogle ScholarPubMed
Schmuck, A, Roussel, AM, Arnaud, J, Ducros, V, Favier, A & Franco, A (1996) Analyzed dietary intakes, plasma concentrations of zinc, copper, and selenium and related metalloenzyme activities in hospitalized elderly women. Journal of the American College of Nutrition 15, 462470.CrossRefGoogle Scholar
Simonoff, M, Segeant, C, Garnier, N, Moretto, P, Llabador, Y, Simonoff, C & Conri, C (1992) Antioxidant status (Se, Vit A, E) and aging. In Free Radicals and Aging, pp. 368397 [Emerit, I and Chance, B, editors] Basel: Birhaüser Verlag.CrossRefGoogle Scholar
Smith, M, Harris, P, Sayre, L & Perry, G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences USA 94, 98669868.Google Scholar
Sohal, RS (1993) The free radical hypothesis of aging: an appraisal of the current status. Aging, Clinical and Experimental Research 5, 317.Google Scholar
Succari, M & Cals, MJ (1998) Influence du vieillissement normal et pathologique sur le statut vitaminique (Influence of normal and pathological ageing on vitamin status). In Le Statut Vitaminique: Physiopathologie, Exploration Biologique et Interêt Clinique. (Vitamin Status: Physiopathology, Biological Investigation and Clinical Significance), pp. 354370 [Le Moel, G, Saverot-Dauvergne, A, Gousson, T and Guéant, JL, editors]. Cachan, France: Editions Médicales Internationales.Google Scholar
Taylor, Maine S (1996) Beta carotene, carotenoids and disease prevention in humans. FASEB Journal 10, 690701.Google Scholar
The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New England Journal of Medicine 330, 10291035.CrossRefGoogle Scholar
Tolonen, M, Halme, M & Sarna, S (1988) Vitamin E and selenium supplementation in geriatric patients: a double-blind preliminary clinical trial. Biological Trace Element Research 7, 161177.Google Scholar
Toussaint, O, Raes, M, Michiels, C & Remacle, J (1998) La réponse des cellules aux stress: relation avec le processus de vieillissement et la pathologie (The response of cells to stress: relationship to the ageing process and the pathology). Medical Science 14, 622635.Google Scholar
Verhaegh, G, Parta, MO, Richard, MJ & Hainaut, P (1998) Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Molecular Carcinogenesis 21, 205214.Google Scholar
World Health Organization/Food and Agriculture Organization/International Atomic Energy Authority (1996) Trace Elements in Human Nutrition and Health. Geneva: WHO.Google Scholar