Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T20:47:01.874Z Has data issue: false hasContentIssue false

Fuel selection in intestinal cells

Published online by Cambridge University Press:  28 February 2007

Pierre-Henri Duée
Affiliation:
Institut National de la Recherche Agronomique, UEPSD CRJ F-78352 Jouy-en-Josas Cedex, France
Béatrice Darcy-Vrillon
Affiliation:
Institut National de la Recherche Agronomique, UEPSD CRJ F-78352 Jouy-en-Josas Cedex, France
François Blachier
Affiliation:
Institut National de la Recherche Agronomique, UEPSD CRJ F-78352 Jouy-en-Josas Cedex, France
Marie-Thérèse Morel
Affiliation:
Institut National de la Recherche Agronomique, UEPSD CRJ F-78352 Jouy-en-Josas Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Anderson, J. W. (1974). Glucose metabolism in jejunal mucosa of fed, fasted, and streptozotocin diabetic rats. American Journal of Physiology 226, 226229.CrossRefGoogle ScholarPubMed
Ardawi, M. S. M. (1988). Glutamine and ketone-body metabolism in the gut of streptozotocin-diabetic rats. Biochemical Journal 249, 565572.CrossRefGoogle ScholarPubMed
Ardawi, M. S. M., Jamal, Y. S., Ashy, A. A., Nasr, H. & Newsholme, E. A. (1990). Glucose and glutamine metabolism in the small intestine of septic rats. Journal of Laboratory and Clinical Medicine 115, 660668.Google ScholarPubMed
Ardawi, M. S. M., Majzoub, M. F. & Newsholme, E. A. (1988). Effect of glucocorticoid treatment on glucose and glutamine metabolism by the small intestine of the rat. Clinical Science 75, 93100.CrossRefGoogle Scholar
Ardawi, M. S. M. & Newsholme, E. A. (1985). Fuel utilization in colonocytes of the rat. Biochemical Journal 231, 713719.CrossRefGoogle ScholarPubMed
Ashy, A. A. & Ardawi, M. S. M. (1988). Glucose, glutamine, and ketone-body metabolism in human enterocytes. Metabolism 37, 602609.CrossRefGoogle ScholarPubMed
Békési, A. & Williamson, D. H. (1990). An explanation for ketogenesis by the intestine of the suckling rat: the presence of an active hydroxymethylglutaryl-coenzyme A pathway. Biology of the Neonate 58, 160165.CrossRefGoogle ScholarPubMed
Bismut, H., Hers, H. G. & Van Schaftingen, E. (1993). Conversion of fructose to glucose in the rabbit small intestine. European Journal of Biochemistry 213, 721726.CrossRefGoogle ScholarPubMed
Blachier, F., Darcy-Vrillon, B., Sener, A., Duée, P. H. & Malaisse, W. J. (1991a). Arginine metabolism in rat enterocytes. Biochimica et Biophysica Acta 1092, 304310.Google Scholar
Blachier, F., M'Rabet-Touil, H., Darcy-Vrillon, B., Posho, L. & Duée, P. H. (1991 b). Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum. Biochemical and Biophysical Research Communications 117, 11711177.CrossRefGoogle Scholar
Brundin, T. & Wahren, J. (1991). Influence of a mixed meal on splanchnic and interscapular energy expenditure in humans. American Journal of Physiology 260, E232E237.Google ScholarPubMed
Butler, R. N., Goland, G., Jarrett, I. G., Fettman, M. J. & Roberts-Thomson, I. C. (1992). Glucose metabolism in proliferating epithelial cells from the rat colon. Comparative Biochemistry and Physiology 101B, 573576.Google Scholar
Clausen, M. R. & Mortensen, P. B. (1994). Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterology 106, 423432.CrossRefGoogle Scholar
Darcy-Vrillon, B., Morel, M. T., Cherbuy, C., Bernard, F., Posho, L., Blachier, F., Meslin, J. C. & Duée, P. H. (1993). Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet. Journal of Nutrition 123, 234243.Google ScholarPubMed
Darcy-Vrillon, B., Posho, L., Morel, M. T., Bernard, F., Blachier, F., Meslin, J. C. & Duée, P. H. (1994). Glucose, galactose, and glutamine metabolism in pig isolated enterocytes during development. Pediatric Research 36, 175181.CrossRefGoogle ScholarPubMed
Evered, D. F. & Masola, B. (1984). The oxidation of glutamine and glutamate in relation to anion transport in enterocyte mitochondria. Biochemical Journal 218, 449458.CrossRefGoogle ScholarPubMed
Firmansyah, A., Penn, D. & Lebenthal, E. (1989). Isolated colonocyte metabolism of glucose, glutamine, n-butyrate, and β-hydroxybutyrate in malnutrition. Gastroenterology 97, 622629.CrossRefGoogle ScholarPubMed
Fleming, S. E., Fitch, M. D., Devris, S., Liu, M. L. & Kight, C. (1991). Nutrient utilization by cells isolated from rat jejunum, cecum and colon. Journal of Nutrition 121, 869878.CrossRefGoogle ScholarPubMed
Fleming, S. E. & Kight, C. E. (1994). The TCA cycle as an oxidative and synthetic pathway is suppressed with aging in jejunal epithelial cells. Canadian Journal of Physiology and Pharmacology 72, 266274.CrossRefGoogle ScholarPubMed
Gangl, A. & Ockner, R. K. (1975). Intestinal metabolism of plasma free fatty acids. Intracellular compartmentation and mechanisms of control. Journal of Clinical Investigation 55, 803813.CrossRefGoogle ScholarPubMed
Girard, J., Ferré, P., Pégorier, J. P. & Duée, P. H. (1992). Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiological Reviews 72, 507562.CrossRefGoogle ScholarPubMed
Granger, H. J. & Norris, C. P. (1980). Intrinsic regulation of intestinal oxygenation in the anaesthetized dog. American Journal of Physiology 238, H836H843.Google Scholar
Hahn, P. & Wei-Ning, H. (1986). Gluconeogenesis from lactate in the small intestinal mucosa of suckling rats. Pediatric Research 20, 13211323.CrossRefGoogle ScholarPubMed
Hanson, P. J. & Parsons, D. S. (1977). Metabolism and transport of glutamine and glucose in vascularly perfused small intestine of the rat. Biochemical Journal 166, 509519.CrossRefGoogle Scholar
Hanson, P. J. & Parsons, D. S. (1980). The interrelationship between glutamine and alanine in the intestine. Biochemical Society Transactions 8, 506509.CrossRefGoogle ScholarPubMed
Henning, S. J. & Hird, F. J. R. (1972). Ketogenesis from butyrate and acetate by the caecum and the colon of rabbits. Biochemical Journal 130, 785790.CrossRefGoogle ScholarPubMed
Jungas, R. L., Halperin, M. L. & Brosnan, J. T. (1992). Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiological Reviews 72, 419448.CrossRefGoogle ScholarPubMed
Kellett, G. L., Jamal, A., Robertson, J. P. & Wollen, N. (1984). The acute regulation of glucose absorption, transport and metabolism in rat small intestine by insulin in vivo. Biochemical Journal 219, 10271035.CrossRefGoogle ScholarPubMed
Kight, C. E. & Fleming, S. E. (1993). Nutrient oxidation by rat intestinal epithelial cells is concentration dependent. Journal of Nutrition 123, 876882.CrossRefGoogle ScholarPubMed
Kimura, R. E. (1987). Glutamine oxidation by developing rat small intestine. Pediatric Research 21, 214217.CrossRefGoogle ScholarPubMed
Kimura, R. E., Thulin, G. & Warshaw, J. B. (1984). The effect of ketone bodies and fatty acid on intestinal glucose metabolism during development. Pediatric Research 18, 575579.CrossRefGoogle ScholarPubMed
Kimura, R. E. & Warshaw, J. B. (1988). Control of fatty acid oxidation by intramitochondrial [NADH]/[NAD+] in developing rat small intestine. Pediatric Research 23, 262265.CrossRefGoogle ScholarPubMed
Lamers, J. M. J. & Hülsmann, W. C. (1974). The effects of fatty acids on oxidative decarboxylation of pyruvate in rat small intestine. Biochimica et Biophysica Acta 343, 215225.CrossRefGoogle ScholarPubMed
McGarry, J. D. & Foster, D. W. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. Annual Review of Biochemistry 49, 395420.CrossRefGoogle ScholarPubMed
Mallet, R. T., Jackson, M. J. & Kelleher, J. K. (1986 a). Jejunal epithelial glucose metabolism: effects of Na+ replacement. American Journal of Physiology 251, C803C809.CrossRefGoogle ScholarPubMed
Mallet, R. T., Kelleher, J. K. & Jackson, M. J. (1986 b). Substrate metabolism of isolated jejunal epithelium: conservation of three-carbon units. American Journal of Physiology 250, C191C198.CrossRefGoogle ScholarPubMed
Mansbach, C. M. II & Dowell, R. F. (1992). Uptake and metabolism of circulating fatty acids by rat intestine. American Journal of Physiology 263, G927G933.Google ScholarPubMed
Newsholme, E. A. & Carrié, A. L. (1994). Quantitative aspects of glucose and glutamine metabolism by intestinal cells. Gut, Suppl. 1, S13S17.CrossRefGoogle Scholar
Pinkus, L. M. & Windmueller, H. G. (1977). Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Archives of Biochemistry and Biophysics 182, 506517.CrossRefGoogle ScholarPubMed
Posho, L., Darcy-Vrillon, B., Blachier, F. & Duée, P. H. (1994). The contribution of glucose and glutamine to energy metabolism in newborn pig enterocytes. Journal of Nutritional Biochemistry 5, 284290.CrossRefGoogle Scholar
Rhoads, J. M., Keku, E. O., Woodard, J. P., Bangdiwala, S. I., Lecce, J. G. & Gatzy, J. T. (1992). L-Glutamine with D-glucose stimulates oxidative metabolism and NaCl absorption in piglet jejunum. American Journal of Physiology 263, G960G966.Google ScholarPubMed
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143187.CrossRefGoogle ScholarPubMed
Roediger, W. E. W. (1982). Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83, 424429.CrossRefGoogle ScholarPubMed
Sit, S. S. & Chou, C. C. (1984). Time course of jejunal blood flow, O2 uptake, and O2 extraction during nutrient absorption. American Journal of Physiology 247, H395H402.Google ScholarPubMed
Souba, W. W. (1991). Glutamine: a key substrate for the splanchnic bed. Annual Review of Nutrition 11, 285308.CrossRefGoogle ScholarPubMed
Srivastava, L. M., Shakespeare, P. & Hübscher, G. (1968). Glucose metabolism in the mucosa of the small intestine. Biochemical Journal 109, 3542.CrossRefGoogle ScholarPubMed
Thumelin, S., Forestier, M., Girard, J. & Pégorier, J. P. (1993). Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochemical Journal 292, 493496.CrossRefGoogle ScholarPubMed
Vaugelade, P., Posho, L., Darcy-Vrillon, B., Bernard, F., Morel, M. T. & Duée, P. H. (1994). Intestinal oxygen uptake and glucose metabolism during nutrient absorption in the pig. Proceedings of the Society for Experimental Biology and Medicine 207, 309316.CrossRefGoogle ScholarPubMed
Vidal, H., Beylot, M., Comte, B., Vega, F. & Riou, J. P. (1989). Vasoactive intestinal peptide stimulates long-chain fatty acid oxidation and inhibits acetyl-coenzyme A carboxylase activity in isolated rat enterocytes. Journal of Biological Chemistry 264, 49014906.CrossRefGoogle ScholarPubMed
Vidal, H., Comte, B., Beylot, M. & Riou, J. P. (1988). Inhibition of glucose oxidation by vasoactive intestinal peptide in isolated rat enterocytes. Journal of Biological Chemistry 263, 92069211.CrossRefGoogle ScholarPubMed
Watford, M. (1994). Glutamine metabolism in rat small intestine: synthesis of three-carbon products in isolated enterocytes. Biochimica et Biophysica Acta 1200, 7378.CrossRefGoogle ScholarPubMed
Watford, M., Erbelding, E. J. & Smith, E. M. (1987). The regulation of glutamine and ketone-body metabolism in the small intestine of the long-term (40 day) streptozotocin-diabetic rat. Biochemical Journal 242, 6168.CrossRefGoogle ScholarPubMed
Watford, M., Lund, P. & Krebs, H. A. (1979). Isolation and metabolic characteristics of rat and chicken enterocytes. Biochemical Journal 178, 589596.CrossRefGoogle ScholarPubMed
Watford, M. & Tatro, A. V. (1989). Phosphoenolpyruvate carboxykinase of rat small intestine: distribution and regulation of activity and mRNA levels. Journal of Nutrition 119, 268272.CrossRefGoogle ScholarPubMed
Weber, F. L. Jr, Veach, G. & Friedman, D. W. (1982). Stimulation of ammonia production from glutamine by intraluminal glucose in small intestine of dogs. American Journal of Physiology 242, G552G557.Google ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1974). Uptake and metabolism of plasma glutamine by the small intestine. Journal of Biological Chemistry 249, 50705079.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Journal of Biological Chemistry 255, 107112.CrossRefGoogle ScholarPubMed
Yen, J. T., Nienaber, J. A., Hill, D. A. & Pond, W. G. (1989). Oxygen consumption by portal vein-drained organs and by whole animal in conscious growing swine. Proceedings of the Society for Experimental Biology and Medicine 190, 393398.CrossRefGoogle ScholarPubMed