Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:11:08.407Z Has data issue: false hasContentIssue false

Differential regulation of the fructose transporters GLUT2 and GLUT5 in the intestinal cell line Caco-2

Published online by Cambridge University Press:  11 October 2007

Edith Brot-Laroche
Affiliation:
Unité de Recherches sur la Diférenciation Cellulaire Intestinale, INSERM UI78, 16 av Paul-Vaillant Couturier, 94807, Villejuif Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Glucose transporters in the control of metabolism’
Copyright
Copyright © The Nutrition Society 1996

References

Bantle, J. P., Swanson, J. E., Thomas, W. & Laine, D. C. (1992). Metabolic effects of dietary fructose in diabetic subjects. Diabetes Care 15, 14681476.CrossRefGoogle ScholarPubMed
Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., Fukumoto, H. & Seino, S. (1990). Molecular biology of mammalian glucose transporters. Diabetes Care 13, 198208.CrossRefGoogle ScholarPubMed
Blais, A., Bisonnette, T. & Berteloot, A. (1987). Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. Journal of Membrane Biology 99, 113125.CrossRefGoogle ScholarPubMed
Borrelli, E., Montmayeur, J. P., Foulkes, N. S., Sassone-Corsi, P. (1992). Signal transduction and gene control: the cAMP pathway. Critical Reviews in Oncogenesis 4, 321338.Google Scholar
Burant, C. F., Takeda, J., Brot-Laroche, E., Bell, G. I. & Davidson, N. O. (1992). Fructose transporter in human spermatozoa and small intestine is GLUT5. Journal of Biological Chemistry 267, 1452314526.CrossRefGoogle ScholarPubMed
Chantret, I., Lacasa, M., Chevalier, G., Swallow, D. & Rousset, M. (1993). Monensin and forskolin inhibit the transcription rate of sucrase-isomaltase but not the stability of its mRNA in Caco-2 cells. FEBS Letters 328, 5558.CrossRefGoogle Scholar
Chantret, I., Rodolosse, A., Barbat, A., Dussaulx, E., Brot-Laroche, E., Zweibaum, A. & Rousset, M. (1994). Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for a glucose-dependent negative regulation. Journal of Cell Science 107, 213225.CrossRefGoogle ScholarPubMed
Cheeseman, C. I. (1993). GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology 105, 10501056.CrossRefGoogle ScholarPubMed
Colville, C. A., Seatter, M. J., Jess, T. J., Gould, G. W. & Thomas, H. M. (1993). Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes-substrate specificities and effects of transport inhibitors. Biochemical Journal 290, 701706.CrossRefGoogle ScholarPubMed
Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. & Bell, G. I. (1992). Human intestinal glucose transporter expression and localization of GLUT5. American Journal of Physiology 262, C795C800.CrossRefGoogle ScholarPubMed
Glinsmann, W. H., Irausquin, H. & Park, Y. 1986 Evaluation of Health Aspects of Sugars Contained in Carbohydrate Sweeteners. Report of Sugars Task Force Washington, DC: Food and Drug Administration.Google ScholarPubMed
Hallfrisch, J. (1990). Metabolic effects of dietary fructose. FASEB Journal 4, 26522660.CrossRefGoogle ScholarPubMed
Leibiger, B. & Leibiger, I. B. (1995). Functional analysis of DNA-elements involved in transcriptional control of the human glucose transporter 2 (GLUT2) gene in the insulin-producing cell line beta TC-3. Diabetologia 38, 112115.CrossRefGoogle Scholar
Mahraoui, L., Rodolosse, A., Barbat, A., Dussaulx, E., Zweibaum, A., Rousset, M., Brot-Laroche, E. (1994a). Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochemical Journal 298, 629633.CrossRefGoogle ScholarPubMed
Mahraoui, L., Rousset, M., Dussaulx, E., Darmoul, D., Zweibaum, A., Brot-Laroche, E. (1992). Expression and localization of GLUT-5 in Caco-2 cells, human small intestine and colon. American Journal of Physiology 263, G312G318.Google ScholarPubMed
Mahraoui, L., Takeda, J., Mesonero, J., Chantret, I., Dussaulx, E., Bell, G. I., Brot-Laroche, E. (1994b). Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochemical Journal 301, 169175.CrossRefGoogle ScholarPubMed
Mesonero, J., Mahraoui, L., Matosin, M., Rodolosse, A., Rousset, M., Brot-Laroche, E. (1994). Expression of the hexose transporters GLUT1-GLUT5 and SGLT1 in clones of Caco-2 cells. Mechanisms and Regulation of Sugar Transport 22, 679683.Google ScholarPubMed
Murakami, T., Nishiyama, T., Shirotani, T., Shinohara, Y., Kan, M., Ishii, K., Kanai, F., Nakazuru, S. & Ebina, Y. (1992). Identification of 2 enhancer elements in the gene encoding the type-1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. Journal of Biological Chemistry 267, 93009306.CrossRefGoogle ScholarPubMed
Pinto, M., Robine-Léon, S., Appay, M. D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J. & Zweibaum, A. (1983). Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell 47, 323330.Google Scholar
Rand, E. B., Depaoli, A. M., Davidson, N. O., Bell, G. I. & Burant, C. F. (1993). Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. American Journal of Physiology 264, G1169G1176.Google ScholarPubMed
Rousset, M., Chantret, I., Darmoul, D., Trugnan, G., Sapin, C., Green, F., Swallow, D. & Zweibaum, A. (1989). Reversible forskolin-induced impairment of sucrase-isomaltase mRNA levels, biosynthesis and transport to the brush border membrane in Caco-2 cells. Journal of Cellular Physiology 141, 627635.CrossRefGoogle Scholar
Rousset, M., Laburthe, M., Pinto, M., Chevalier, G., Rouyer-Fessard, C., Dussaulx, E., Trugnan, G., Boige, N., Brun, J. L. & Zweibaum, A. (1985). Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: modulation by forskolin. Journal of Cellular Physiology 123, 377385.CrossRefGoogle ScholarPubMed
Seamon, K. B., Padgett, W. & Daly, J. W. (1981). Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proceedings of the National Academy of Sciences, USA 78, 33633367.CrossRefGoogle ScholarPubMed
Takeda, J., Kayano, T., Fukumoto, H. & Bell, G. I. (1993). Organization of the human GLUT2 (pancreatic b-cell and hepatocyte) glucose transporter gene. Diabetes 42, 773777.CrossRefGoogle Scholar
Thorens, B. (1993). Facilitated glucose transporters in epithelial cells. Annual Reviews of Physiology 55, 591608.CrossRefGoogle ScholarPubMed
Waeber, G., Thompson, N., Haefliger, J. A. & Nicod, P. (1994). Characterization of the murine high k(m) glucose transporter GLUT2 gene and its transcriptional regulation by glucose in a differentiated insulin-secreting cell line. Journal of Biological Chemistry 269, 2691226919.CrossRefGoogle Scholar
Zweibaum, A. (1986). Enterocytic differentiation of cultured human colon cancer cell lines: negative modulation by D-glucose. In Lon-gradient-coupled Transport INSERM Symposium no. 26, 345352 Alvarado, F. & Van Os, C. H. Amsterdam, New York and Oxford: Elsevier Science Publishers.Google Scholar
Zweibaum, A., Laburthe, M., Grasset, E. & Louvard, D. (1991). Use of cultured cell lines in studies of intestinal cell differentiation and function. In Intestinal Absorption and Secretion Handbook of Physiology. Section 6. The Gastrointestinal System, vol. 4, 223255 Field, M. & Frizzell, R. A. Bethesda, MD: American Physiological Society.Google Scholar