Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:23:16.119Z Has data issue: false hasContentIssue false

The control of haemoglobin synthesis: factors controlling the output of α and β chains

Published online by Cambridge University Press:  24 January 2017

R. T. Hunt
Affiliation:
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
A. R. Hunter
Affiliation:
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
A. J. Munro
Affiliation:
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of the effects of amino acid starvation in reticulocytes is comparatively simple compared with similar analysis in other tissues of whole organisms. This is mainly because of the absence of RNA synthesis in reticulocytes, but also because the bulk of the protein being synthesized is haemoglobin, a protein whose structure is completely known. The absence of RNA synthesis eliminates complications that would otherwise arise through RNA-mediated control mechanisms which in turn might mask the effects of amino acid starvation on the protein synthetic machinery in the cells (Munro, 1969). Consequently reticulocytes have been used to study the effect of amino acid starvation on the actual process of protein synthesis and assembly.

Type
Symposium Proceedings
Copyright
Copyright © Proceedings of the Nutrition Society 1969

References

Baglioni, C. & Campana, T. (1967). Eur. J. Biochem. 2, 480.10.1111/j.1432-1033.1967.tb00162.xGoogle Scholar
Baglioni, C., Campana, T. & Colombo, B. (1966). Archs Biochem. Biophys. 117, 515.10.1016/0003-9861(66)90092-0Google Scholar
Bruns, G. P. & London, I. M. (1965). Biochem. biophys. Res. Commun. 18, 236.10.1016/0006-291X(65)90746-1Google Scholar
Colombo, B. & Baglioni, C. (1966). J. molec. Biol. 16, 51.10.1016/S0022-2836(66)80262-0Google Scholar
Hori, M., Fisher, J. M. & Rabinovitz, M. (1967). Science, N. Y. 155, 83.10.1126/science.155.3758.83Google Scholar
Hori, M. & Rabinovitz, M. (1968). Proc. natn. Acad. Sci. U.S.A. 59, 1349.10.1073/pnas.59.4.1349Google Scholar
Huehns, E. R., Dance, N., Shooter, E. M. & Beaven, G. H. (1962). J. molec. Biol. 5, 511.10.1016/S0022-2836(62)80124-7Google Scholar
Hunt, R. T., Hunter, A. R. & Munro, A. (1968α). J. molec. Biol. 36, 31.10.1016/0022-2836(68)90217-9Google Scholar
Hunt, R. T., Hunter, A. R. & Munro, A. J. (1968ο). Nature, Lond. 220, 481.10.1038/220481a0Google Scholar
Hunt, R. T., Hunter, A. R. & Munro, A. J. (1969). J. molec. Biol. 43, 123.10.1016/0022-2836(69)90083-7Google Scholar
Itano, H. A. (1966). J. cell. comp. Physiol. 67, 65.10.1002/jcp.1040670408Google Scholar
Kazazian, H. H. Jr & Freedman, M. L. (1968). J. biol. Chem. 243, 6446.Google Scholar
Lingrel, J. B. & Borsook, H. (1963). Biochemistry, Easton 2, 309.10.1021/bi00902a022Google Scholar
Munro, H. N. (1969). Proc. Nutr. Soc. 28, 214.10.1017/S0029665100100114Google Scholar
Schweiger, H. G., Rapoport, S. & Scholzel, F. (1956). Z. Physiol. Chem. 306, 33.Google Scholar
Shaeffer, J. R., Trostle, P. K. & Evans, R. F. (1967). Science, N. Y. 158, 488.10.1126/science.158.3800.488Google Scholar
Tavili, A. S., Grayzel, A. L, London, I. M., Williams, M. K. & Vanderhoff, G. A. (1968). J. biol. Chem. 243, 4987.Google Scholar
Waxman, H. S. & Rabinovitz, M. (1966). Biochim. biophys. Acta 129, 369.10.1016/0005-2787(66)90379-0Google Scholar
Winslow, R. M. & Ingram, V. M. (1966). J. biol. Chem. 241, 1144.Google Scholar