Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:58:05.192Z Has data issue: false hasContentIssue false

Adaptation of mammalian protein metabolism to amino acid supply

Published online by Cambridge University Press:  24 January 2017

Hamish N. Munro*
Affiliation:
Physiological Chemistry Laboratories, Department of Nutrition and Food Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The metabolism of the animal is equipped to adapt to changes in both the internal and the external environment. Among internal factors are activity versus rest and sleep, and the menstrual cycle in the case of the female. Metabolism must also respond to variations in the external environment, such as heat and cold, and notably the availability of food. Metabolic adaptation to nutrient supply is of two kinds. First, there are transient physiological adaptations to the intermittent intake of nutritionally adequate meals. These short-lived adaptations account for a large part of the diurnal variations that have been observed in the protein metabolism of mammals (Wurtman, 1969). Secondly, long-term adaptive reactions occur when there is a decrease in availability of an essential nutrient in the diet. Under such circumstances, tissue constituents are lost to varying degrees from different parts of the body. It is proposed to discuss here mainly short-term physiological adaptations to variations in amino acid supply and their relevance to the needs of the body for dietary protein. Adaptive changes resulting from long-term protein deficiency are considered in the paper by Waterlow & Stephen (1969).

Type
Symposium Proceedings
Copyright
Copyright © Proceedings of the Nutrition Society 1969

References

Amenta, J. S. & Johnston, E. H. (1963). Lab. Invest. 12, 921.Google Scholar
Baliga, B. S., Pronczuk, A. W. & Munro, H. N. (1968). J. molec. Biol. 34, 199.10.1016/0022-2836(68)90247-7Google Scholar
Bojanowska, K. & Williamson, D. H. (1968). Biochim. biophys. Acta 159, 560.10.1016/0005-2744(68)90146-0Google Scholar
Clark, C. M., Naismith, D. J. & Munro, H. N. (1957). Biochim. biophys. Acta 23, 581.10.1016/0006-3002(57)90380-3Google Scholar
Denton, A. E. & Elvehjem, C. A. (1954). J. biol. Chem. 206, 449.Google Scholar
Eagle, H., Piez, K. A. & Levy, M. (1961). J. biol. Chem. 236, 2039.Google Scholar
Elwyn, D. (1969). In Mammalian Protein Metabolism. Vol. 4, Ch. 37. [Munro, H. N., editor.] New York: Academic Press. (In the Press.)Google Scholar
Falion, H. J., Davis, J. L. & Goyer, R. A. (1968). J. Nutr. 96, 220.Google Scholar
Fleck, A., Shepherd, J. & Munro, H. N. (1965). Science, N. Y. 150, 628.10.1126/science.150.3696.628Google Scholar
Gan, J. C. & Jeffay, H. (1967). Biochim. biophys. Acta 148, 448.10.1016/0304-4165(67)90141-9Google Scholar
Harper, A. E. (1968). Am. J. clin. Nutr. 21, 358.Google Scholar
Henriques, O. B., Henriques, S. B. & Neuberger, A. (1955). Biochem. J. 60, 409.10.1042/bj0600409Google Scholar
Hopper, A. F., Wannemacher, R. W. & McGovern, P. A. (1968). Proc. Soc. exp. Biol. Med. 128, 695.10.3181/00379727-128-33103Google Scholar
Kaplan, J. H. & Pitot, H. C. (1969). In Mammalian Protein Metabolism. Vol. 4, Ch. 35. [Munro, H. N., editor.] New York: Academic Press. (In the Press.)Google Scholar
Kenney, M. A., Roderuck, C. E., Arnrich, L. & Piedad, F. (1968). J. Nutr. 95, 173.Google Scholar
Kirsch, R., Frith, L., Black, E. & Hoffenberg, R. (1968). Nature, Lond. 217, 579.10.1038/217579a0Google Scholar
Longenecker, J. B. & Hause, N. L. (1959). Archs Biochem. Biophys. 84, 46.10.1016/0003-9861(59)90552-1Google Scholar
McCormick, D. B. & Snell, E. S. (1961). J. biol. Chem. 236, 2805.Google Scholar
Miller, L. L. (1962). In Amino Acid Pools. [Holden, J. T., editor.] Amsterdam: Elsevier.Google Scholar
Miller, S. A. (1969). In Mammalian Protein Metabolism. Vol. 3, Ch. 26. [Munro, H. N., editor.] New York: Academic Press.Google Scholar
Mimura, T., Yamada, C. & Swendseid, M. E. (1968). J. Nutr. 95, 493.Google Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism. Vol. 1, Ch. 10. [Munro, H. N., editor.] New York: Academic Press.Google Scholar
Munro, H. N. (1968). Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1231.Google Scholar
Munro, H. N. & Clark, C. M. (1959). Biochim. biophys. Acta 33, 551.10.1016/0006-3002(59)90148-9Google Scholar
Munro, H. N. & Goldberg, D. M. (1964). In The Role of the Gastro-intestinal Tract in Protein Metabolism. p. 189. [Munro, H. N., editor.] Oxford: Blackwell.Google Scholar
Paul, J. (1958). J. exp. Zool. 142, 475.Google Scholar
Pronczuk, A. W., B. S., Baliga, Triant, J. W. & Munro, H. N. (1968). Biochim. biophys. Acta 157, 204.10.1016/0005-2787(68)90281-5Google Scholar
Riggs, T. R. & Walker, L. M. (1963). J. biol. Chem. 238, 2663.Google Scholar
Schingoethe, D. J., Hageman, E. C. & Larson, B. L. (1967). Biochim. biophys. Acta 148, 469.10.1016/0304-4165(67)90143-2Google Scholar
Staehelin, T., Verney, E. & Sidransky, H. (1967). Biochim. biophys. Acta 145, 105.10.1016/0005-2787(67)90659-4Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1966). Br. J. Nutr. 26, 461.Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1969). Proc. Nutr. Soc. 28, 234.10.1017/S002966510010014XGoogle Scholar
Winick, M. & Noble, A. (1966). J. Nutr. 89, 300.Google Scholar
Wunner, W. H., Bell, J. & Munro, H. N. (1966). Biochem.J. 101, 417.10.1042/bj1010417Google Scholar
Wurtman, R. J. (1969). In Mammalian Protein Metabolism. Vol. 4, Ch. 36. [Munro, H. N., editor.] New York: Academic Press. (In the Press.)Google Scholar