Published online by Cambridge University Press: 09 July 2002
This is the fifth in a series of papers constructing explicit examples of special Lagrangian submanifolds in ${\mathbb C}^m$. A submanifold of ${\mathbb C}^m$ is ruled if it is fibred by a family of real straight lines in ${\mathbb C}^m$. This paper studies ruled special Lagrangian 3-folds in ${\mathbb C}^3$, giving both general theory and families of examples. Our results are related to previous work of Harvey and Lawson, Borisenko, and Bryant. Special Lagrangian cones in ${\mathbb C}^3$ are automatically ruled, and each ruled special Lagrangian 3-fold is asymptotic to a unique special Lagrangian cone. We study the family of ruled special Lagrangian 3-folds N asymptotic to a fixed special Lagrangian cone N0. We find that this depends on solving a linear equation, so that the family of such N has the structure of a vector space. We also show that the intersection $\Sigma$ of N0 with the unit sphere ${\mathcal S}^5$ in ${\mathbb C}^3$ is a Riemann surface, and construct a ruled special Lagrangian 3-fold N asymptotic to N0 for each holomorphic vector field w on $\Sigma$. As corollaries of this we write down two large families of explicit special Lagrangian 3-folds in ${\mathbb C}^3$ depending on a holomorphic function on $\mathbb C$, which include many new examples of singularities of special Lagrangian 3-folds. We also show that each special Lagrangian T2-cone N0 can be extended to a 2-parameter family of ruled special Lagrangian 3-folds asymptotic to N0, and diffeomorphic to $T^2\times{\mathbb R}$.
2000 Mathematical Subject Classification: 53C38, 53D12.