Published online by Cambridge University Press: 29 April 2002
A monoid structure on families of representations of a quiver is introduced by taking extensions of representations in families, that is, subvarieties of the varieties of representations. The study of this monoid leads to interesting interactions between representation theory, algebraic geometry and quantum group theory. For example, it produces a wealth of interesting examples of families of quiver representations, which can be analysed by representation-theoretic and geometric methods. Conversely, results from representation theory, in particular A. Schofield's work on general properties of quiver representations, allow us to relate the monoid to certain degenerate forms of quantized enveloping algebras.
2000 Mathematical Subject Classification: 16G20, 14L30, 17B37.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.