Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T05:33:02.891Z Has data issue: false hasContentIssue false

Integrated density of states for random metrics on manifolds

Published online by Cambridge University Press:  14 April 2004

Daniel Lenz
Affiliation:
Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany. E-mail: [email protected], www.tu-chemnitz.de/mathematik/analysis/dlenz
Norbert Peyerimhoff
Affiliation:
Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany. E-mail: [email protected], www.ruhr-uni-bochum.de/mathematik10/Norbert.html
Ivan Veselić
Affiliation:
Forschungsstipendiat der Deutschen Forschungsgemeinschaft Current address: Forschungsstipendiat der Deutschen Forschungsgemeinschaft. Current address: Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: [email protected], http://homepage.ruhr-uni-bochum.de/Ivan.Veselic/
Get access

Abstract

We study ergodic random Schrödinger operators on a covering manifold, where the randomness enters both via the potential and the metric. We prove measurability of the random operators, almost sure constancy of their spectral properties, the existence of a self-averaging integrated density of states and a Pastur–šubin type trace formula.

Type
Research Article
Copyright
2004 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)