Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:26:38.412Z Has data issue: false hasContentIssue false

ALMOST EVERYWHERE CONVERGENCE OF BOCHNER–RIESZ MEANS ON THE HEISENBERG GROUP AND FRACTIONAL INTEGRATION ON THE DUAL

Published online by Cambridge University Press:  09 July 2002

DIRK GORGES
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany. [email protected]
DETLEF MÜLLER
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany. [email protected]
Get access

Abstract

Let $L$ denote the sub-Laplacian on the Heisenberg group $\mathbb{H}_n$ and $T_r^\lambda := (1 - r L)^\lambda_+$ the corresponding Bochner-Riesz operator. Let $Q$ denote the homogeneous dimension and $D$ the Euclidean dimension of $\mathbb{H}_n$. We prove convergence a.e. of the Bochner-Riesz means $T_r^\lambda f$ as $r \rightarrow 0$ for $\lambda > 0$ and for all $f \in L^p(\mathbb{H}_n)$, provided that \frac{Q-1}{Q} \Big(\frac{1}{2} - \frac{\lambda}{D-1} \Big) < 1/p \le 1/2. Our proof is based on explicit formulas for the operators $\partial_{\omega^a}$ with $a \in \mathbb{C}$, defined on the dual of $\mathbb{H}_n$ by $\partial_{\omega^a} \widehat{f} := \widehat{\omega^a f}$, which may be of independent interest. Here $\omega$ is given by $\omega(z,u) := |z|^2 - 4iu$ for all $(z,u) \in \mathbb{H}_n$.

2000 Mathematical Subject Classification: 22E30, 43A80.

Type
Research Article
Copyright
2002 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)