Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T09:48:28.387Z Has data issue: false hasContentIssue false

Simple Integration of Sensory Functions

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The digitalization of the Industry is one of the megatrends taking place, but many companies struggle to follow this trend. The main reason is the absence of simple solutions for the integration of sensory functions, which are applicable to the existing system. Therefore, this paper discusses the aspects of simplicity in the context of integrating sensory functions into existing systems, to support the development of digitalized products.

Two general requirements can be formulated for a solution to be applicable simple: The first requirement is affected by the product structure. The solution must affect the least possible amount of modules and must not interfere with the interfaces of the modular platform. The second requirement is affected by the effort to model the behaviour of the desired information and the possible data a sensory function is delivering. The effort to develop a reliable solution has to be compared with the commercial potential of the solution.

To consider the mentioned requirements, the paper explains three approaches to assess the simplicity of solutions on an example of the desired monitoring of the functions of a rotary plug valve.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Beetz, J.-P., Schlemmer, P.D., Kloberdanz, H. and Kirchner, E. (2018), “Using the new Working Space Model for the Development of Hygienic Products”, In: Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Ed.), Design 2018: Proceedings of the 15th International Design Conference, May 2018, Dubrovnik, Croatia, May, 21-24, 2018, Fac. of Mechanical Engineering and Naval Architecture Univ, Zagreb, pp. 985996. http://doi.org/10.21278/IDC.2018.0142Google Scholar
Brecher, C., Jasper, D. and Schmidt, M.F. (2016), “Methodik zur Ermittlung der Schraubenzusatzkräfte von Schraubenverbindungen”, Konstruktion, Vol. 2016 No. 6, pp. 7882.Google Scholar
Foulard, S., Ichchou, M., Rinderknecht, S. and Perret-Liaudet, J. (2015), “Online and real-time monitoring system for remaining service life estimation of automotive transmissions – Application to a manual transmission”, Mechatronics, Vol. 30, pp. 140157. http://doi.org/10.1016/j.mechatronics.2015.06.013Google Scholar
Greve, E. and Krause, D. (2018), “An Assessment of Methods to Support the Design of Future Robust Modular Product Architectures”, May, 21-24, 2018, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, pp. 335346. http://doi.org/10.21278/idc.2018.0249Google Scholar
Groche, P. and Brenneis, M. (2014), “Manufacturing and use of novel sensoric fasteners for monitoring forming processes”, Measurement, Vol. 53, pp. 136144. http://doi.org/10.1016/j.measurement.2014.03.042Google Scholar
Groche, P., Calmano, S., Felber, T. and Schmitt, S.O. (2015), “Statistical analysis of a model based product property control for sheet bending”, Production Engineering, Vol. 9 No. 1, pp. 2534. http://doi.org/10.1007/s11740-014-0576-5Google Scholar
Krause, D. and Gebhardt, N. (2018), Methodische Entwicklung modularer Produktfamilien: Hohe Produktvielfalt beherrschbar entwickeln, Springer Vieweg, Berlin. http://doi.org/10.1007/978-3-662-53040-5Google Scholar
Martin, G., Schork, S., Vogel, S. and Kirchner, E. (2018), “MME. Potentiale mikroinvasiver intelligenter Maschinenelemente”, Konstruktion, Vol. 2018 No. 01-02, pp. 7182.Google Scholar
Pahl, G., Beitz, W., Blessing, L., Feldhusen, J., Grote, K.-H. and Wallace, K. (Eds.) (2007), Engineering Design: A Systematic Approach, 3 Edition, Springer-Verlag London Limited, London. http://doi.org/10.1007/978-1-84628-319-2Google Scholar
Roth, K. (2000), Konstruieren mit Konstruktionskatalogen, Springer Berlin Heidelberg, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-17466-7Google Scholar
Schaeffler Technologies AG & Co. KG (2017), FAG VarioSense-Lager. konfigurierbare Sensorlager für die Maschinen- und Prozessüberwachung, Available at: https://www.schaeffler.de/content.schaeffler.de/de/news_medien/presse/pressemitteilungen/pressemitteilungen_detail.jsp?id=76568131 (accessed 28 November 2018).Google Scholar
Schork, S., Gramlich, S. and Kirchner, E. (2016), “Entwicklung von Smart ME. Ansatz der smarten Ausgleichkupplung”, In: Krause, D., Paetzold, K. and Wartzack, S., 2016, Design for X - Beiträge zum 27. DfX-Symposium Oktober 2016, Jesteburg, Germany, TuTech Verlag TuTech Innovation GmbH, Hamburg, pp. 181192.Google Scholar
Stachowiak, H. (1973), Allgemeine Modelltheorie, Springer, Wien.Google Scholar
Vogel, S., Martin, G., Schirra, T. and Kirchner, E. (2018), “Robust Design for Mechatronic Machine Elements - How Robust Design Enables the Application of Mechatronic Shaft-Hub Connection”, In: Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Ed.), Design 2018: Proceedings of the 15th International Design Conference, May 2018, Dubrovnik, Croatia, May, 21-24, 2018, Fac. of Mechanical Engineering and Naval Architecture Univ, Zagreb, pp. 30333040. http://doi.org/10.21278/idc.2018.0203Google Scholar
Zhou, Z., Wang, Z. and Shao, L. (2016), “Fiber-Reinforced Polymer-Packaged Optical Fiber Bragg Grating Strain Sensors for Infrastructures under Harsh Environment”, Journal of Sensors, Vol. 2016 No. 1, pp. 118. http://doi.org/10.1155/2016/3953750Google Scholar