Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T02:50:32.776Z Has data issue: false hasContentIssue false

A Methodology for the Application of Virtual Evaluation Methods within the Design Process of Cold Forged Steel Pinions

Published online by Cambridge University Press:  26 July 2019

Andreas Rohrmoser*
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Manufactoring Technology;
Björn Heling
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology
Benjamin Schleich
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology
Christoph Kiener
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Manufactoring Technology;
Hinnerk Hagenah
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Manufactoring Technology;
Sandro Wartzack
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology
Marion Merklein
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Manufactoring Technology;
*
Contact: Rohrmoser, Andreas, Friedrich-Alexander-Universität Erlangen-Nürnberg Institute of Manufacturing Technology, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Gears are essential machine elements in the drivetrain and transmission technology. The operational behaviour of a gear pairing is influenced by the design of the gear kinematics as well as the component properties. With regard to an improvement of performance and service life, the targeted modification of tooth geometry and component properties offers a promising approach. Thus, the achievable geometric and mechanical component properties are influenced by the manufacturing process, which must be taken into account in the design process. The application of virtual evaluation methods is suitable for this purpose. For the manufacturing of steel gears, cold forging provides the potential of achieving beneficial mechanical properties in a highly productive process. Major challenges for the industrial application are the short service life of the cost- intensive tools and the low geometric accuracy in comparison to machining processes. Within this study the design of the tooth geometry as well as the associated forming tool are investigated. The aim is to derive recommendations regarding an optimization of the resulting component properties and operational behaviour.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Bausch, T. (2011), Innovative Zahnradfertigung. Verfahren, Maschinen und Werkzeuge zur kostengünstigen Herstellung von Stirnrädern mit hoher Qualität, expert-Verlag, Renningen.Google Scholar
Heling, B., Hallmann, M. and Wartzack, S. (2017), “Hybrid Tolerance Representation of Systems in Motion”, Procedia CIRP, Vol. 60, pp. 5055.Google Scholar
Heling, B., Schleich, B. and Wartzack, S. (2018), “Robust-Design-Optimization of mechanisms based on kinematic requirements considering uncertainties”, Procedia CIRP, Vol. 75, pp. 2732.Google Scholar
Hockett, J.E. and Sherby, O.D. (1975), “Large strain deformation of polycrystalline metals at low homologous temperatures”, Journal of the Mechanics and Physics of Solids, pp. 8798.Google Scholar
ICFG Document 14/02 (2002), Tool Life & Tool Quality in Cold Forging, Part 1: General Aspects of Tool Life, Meisenbach Verlag, Bamberg.Google Scholar
ISO 1328-1 (2013), Cylindrical gears - ISO system of flank tolerance classification, Beuth Verlag, Berlin.Google Scholar
Jütte, F. (2008), “Fliesspressen - Schrägverzahnungen lassen sich auch umformtechnisch präzise herstellen”, MaschinenMarkt, pp. 2427.Google Scholar
Kawasaki, Y. (2007), “High Precision (DIN8 class) Forged Helical Gear - Manual Transaxle for Passenger Car, ICFG workshop Quality and Properties of Cold Forged Products and JSTP Forging Committee, Nagoya University.Google Scholar
Klocke, F. (2017), Zahnrad und Getriebetechnik – Auslegung-Herstellung-Untersuchung-Simulation, Carl Hanser Verlag, München.Google Scholar
Klocke, F. (2008), “Trends in der Zahnradfertigung”, In: Neugebauer, R. (Ed.), Zerspanung in Grenzbereichen, 5. Chemnitzer Produktionstechnisches Kolloquium, CPK 2008; Tagungsband, Berichte aus dem IWU, Band 46, pp. 87113.Google Scholar
König, W., Steffens, K. and Hoffmann, H.W. (1985), “Gear Production by Cold Forming”, CIRP Annals Manufacturing Technology, pp. 481483.Google Scholar
Lange, K., Kammerer, M., Pöhlandt, K. and Schöck, J. (2008), Fließpressen. Wirtschaftliche Fertigung metallischer Präzisionswerkstücke, Springer, Berlin.Google Scholar
Lorenz, R., Hagenah, H. and Merklein, M. (2018), “Experimental evaluation of cold forging lubricants using double cup extrusion tests”, Materials Science Forum, Vol. 918, pp. 6570.Google Scholar
Niemann, G. and Winter, H. (1980), Machine Elements Design and Calculation in Mechanical Engineering: Vol.2: Gears, Springer, Berlin, Heidelberg.Google Scholar
Radzevich, S.P. (2017), Theory of Gearing: Kinematics, Geometry, and Synthesis, CRC Press, Boca Raton.Google Scholar
Schuler (1998), Metal Froming Handbook, Springer, Berlin, Heidelberg.Google Scholar