Article contents
Ai Motion Control – A Generic Approach to Develop Control Policies for Robotic Manipulation Tasks
Published online by Cambridge University Press: 26 July 2019
Abstract
Current robotic solutions are able to manage specialized tasks, but they cannot perform intelligent actions which are based on experience. Autonomous robots that are able to succeed in complex environments like production plants need the ability to customize their capabilities. With the usage of artificial intelligence (AI) it is possible to train robot control policies without explicitly programming how to achieve desired goals. We introduce AI Motion Control (AIMC) a generic approach to develop control policies for diverse robots, environments and manipulation tasks. For safety reasons, but also to save investments and development time, motion control policies can first be trained in simulation and then transferred to real applications. This work uses the descriptive study I according to Blessing and Chakrabarti and is about the identification of this research gap. We combine latest motion control and reinforcement learning results and show the potential of AIMC for robotic technologies with industrial use cases.
- Type
- Article
- Information
- Proceedings of the Design Society: International Conference on Engineering Design , Volume 1 , Issue 1 , July 2019 , pp. 3561 - 3570
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s) 2019
References
- 8
- Cited by