Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T15:44:52.807Z Has data issue: false hasContentIssue false

X-ray observations of central stars of planetary nebulae and their winds

Published online by Cambridge University Press:  30 August 2012

Martín A. Guerrero*
Affiliation:
Instituto de Astrofísica de Andalucía (IAA-CSIC), Granada, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The photospheric emission from the hottest central stars of planetary nebulae (CSPNe) is capable to extend into the X-ray domain, with emission peaking at 0.1-0.2 keV and vanishing above 0.4 keV. Unexpected, intriguing hard X-ray emission with energies greater than 0.5 keV has been reported for several CSPNe and for a number of white dwarfs (WDs). Different mechanisms may be responsible for the hard X-ray emission from CSPNe and WDs: coronal emission from a late-type companion, shocks in fast winds as in OB stars, leakage from underneath the star photosphere, or accretion of material from a disk, a companion star, or the circumstellar medium. Therefore, the hard X-ray emission associated with CSPNe may have significant implications for our understanding of the formation of PNe: binary companions, disks, and magnetic fields are thought to play a major role in the shaping of PNe, whereas clumping in the stellar wind may have notable effects in the PN evolution by modifying the stellar mechanical energy output. Here I present the results of different observational efforts to search for hard X-ray emission from CSPNe and discuss the different mechanisms for the production of hard X-rays.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Apparao, K. M. V. & Tarafdar, S. P. 1989, ApJ, 344, 826 Google Scholar
Balick, B. 2004, AJ, 127, 2262 CrossRefGoogle Scholar
Berghöfer, T. W., Schmidtt, J. H. M. M., Danner, R., & Cassinelli, J. P. 1997, A&A, 322, 167 Google Scholar
Bilíková, J., Chu, Y. H., Gruendl, R. A., & Maddox, L. A. 2010, AJ, 140, 1433 CrossRefGoogle Scholar
Chu, Y. H., Guerrero, M. A., Gruendl, R. A., & Webbink, R. F. 2004, AJ, 127, 477 CrossRefGoogle Scholar
Chu, Y. H., Guerrero, M. A., Gruendl, R. A., Williams, R. M., & Kaler, J. B. 2001, ApJ, 553, L69 Google Scholar
de Korte, P. A. J., Claas, J. J., Jansen, F. A., & McKechnie, S. P. 1985, AdSpR, 5, 57 Google Scholar
de Marco, O. 2009, PASP, 121, 316 CrossRefGoogle Scholar
Eracleous, M., Halpern, J., & Patterson, J. 1991, ApJ, 382, 290 CrossRefGoogle Scholar
Fleming, T. A., Werner, K., & Barstow, M. A. 1993, ApJ, 416, L79 CrossRefGoogle Scholar
Gayley, K. G. & Owocki, S. P. 1995, ApJ, 446, 801 CrossRefGoogle Scholar
Gosset, E., Nazé, Y., Sana, H., Rauw, G., & Vreux, J. M. 2009, A&A, 508, 805 Google Scholar
Gruendl, R. A., Chu, Y. H., O'Dwyer, I. J., & Guerrero, M. A. 2001, AJ, 122, 308 CrossRefGoogle Scholar
Güdel, M. 2004, A&A Rev. 12, 71 Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L. 1997, ApJ, 483, 947 CrossRefGoogle Scholar
Guerrero, M. A., Chu, Y. H., & Gruendl, R. A. 2000, ApJS, 129, 295 CrossRefGoogle Scholar
Guerrero, M. A., Chu, Y. H., Gruendl, R. A., Williams, R. M., & Kaler, J. B. 2001, ApJ, 553, L55 CrossRefGoogle Scholar
Guerrero, M. A., Miranda, L. F., Riera, A., et al. 2008, ApJ, 683, 272 CrossRefGoogle Scholar
Herald, J. & Bianchi, L. 2011, MNRAS, 417, 2440 CrossRefGoogle Scholar
Hoare, M. G., Martin, A. B., Werner, K., & Fleming, T. 1995, MNRAS, 273, 812 Google Scholar
Hünsch, M., Schmitt, J. H. M. M., Sterzik, M. F., & Voges, W. 1999, A&AS, 135, 319 Google Scholar
Hünsch, M., Schmitt, J. H. M. M., & Voges, W. 1998, A&AS, 132, 155 Google Scholar
Jasniewicz, G., Duquennoy, A., & Acker, A. 1987, A&A, 180, 145 Google Scholar
Jeffries, R. D., Stevens, I. R., 1996, MNRAS, 279, 180 CrossRefGoogle Scholar
Kreysing, H. C., Diesch, C., Zweigle, J., Staubert, R., Grewing, M., & Hasinger, G. 1992, A&A, 264, 623 Google Scholar
Leahy, D. A., Zhang, C. Y., & Kwok, S. 1994, ApJ, 422, L205 CrossRefGoogle Scholar
Livio, M. & Pringle, J. E. 1996, ApJ, 465, L55 CrossRefGoogle Scholar
Lucy, L. B. & White, R. L. 1980, ApJ, 241, 300 Google Scholar
Méndez, R., et al. 2012, IAU Symp. 283, this volumeGoogle Scholar
Miranda, L. F. & Solf, J. 1992, A&A, 260, 397 Google Scholar
Miszalski, B., Acker, A., Parker, Q. A., & Moffat, A. F. J. 2009, A&A, 505, 249 Google Scholar
Montez, R. Jr., De Marco, O., Kastner, J. H., & Chu, Y. H. 2010, ApJ, 721, 1820 CrossRefGoogle Scholar
Montez, R., et al. 2012, IAU Symp. 283, this volumeGoogle Scholar
Nazé, Y. 2009, A&A, 506, 1055 Google Scholar
O'Dwyer, I. J., Chu, Y. H., Gruendl, R. A., Guerrero, M. A., & Webbink, R. F. 2003, AJ, 125, 2239 Google Scholar
Orio, M., Covington, J., & Ögelman, H. 2001, A&A, 373, 542 Google Scholar
Pallavicini, R., Golub, L., Rosner, R., Vaiana, G. S., Ayres, T., & Linsky, J. L. 1981, ApJ, 248, 279 CrossRefGoogle Scholar
Patriarchi, P. & Perinotto, M. 1995, A&AS, 110, 353 Google Scholar
Patriarchi, P. & Perinotto, M. 1997, A&AS, 126, 385 Google Scholar
Prinja, R. K. 1990, A&A, 232, 119 Google Scholar
Prinja, R. K., Hodges, S. E., Massa, D. L., Fullerton, A. W., & Burnley, A. W. 2007, MNRAS, 382, 299 CrossRefGoogle Scholar
Rauch, T. 2003, A&A, 403, 709 Google Scholar
Rauch, T., Köppen, J., & Werner, K. 1994, A&A, 286, 543 Google Scholar
Soker, N. & Kastner, J. H. 2002, ApJ, 570, 245 CrossRefGoogle Scholar
Soker, N. 1997, ApJS, 112, 487 Google Scholar
Su, K. Y. L., Chu, Y. H., Rieke, G. H., Huggins, P. J., Gruendl, R. A., Napiwotzki, R., Rauch, T., Latter, W. B., & Volk, K. 2007, ApJ, 657, L41 CrossRefGoogle Scholar
Tarafdar, S. P. & Apparao, K. M. V. 1988, ApJ, 327, 342 Google Scholar
Zamanov, R. K., Bode, M. F., Melo, C. H. F., Porter, J., Gomboc, A., & Konstantinova-Antova, R. 2006, MNRAS, 365, 1215 CrossRefGoogle Scholar