Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T15:07:20.919Z Has data issue: false hasContentIssue false

WISE data and sparse photometry used for shape reconstruction of asteroids

Published online by Cambridge University Press:  01 March 2016

Josef Ďurech
Affiliation:
Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic email: [email protected]
Josef Hanuš
Affiliation:
Laboratoire Lagrange, UMR7293, Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Blvd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France
Victor M. Alí-Lagoa
Affiliation:
Laboratoire Lagrange, UMR7293, Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Blvd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France
Marco Delbo
Affiliation:
Laboratoire Lagrange, UMR7293, Université de la Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Blvd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France
Dagmara A. Oszkiewicz
Affiliation:
Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asteroid disk-integrated sparse-in-time photometry can be used for determination of shapes and spin states of asteroids by the lightcurve inversion method. To clearly distinguish the correct solution of the rotation period from other minima in the parameter space, data with good photometric accuracy are needed. We show that if the low-quality sparse photometry obtained from ground-based astrometric surveys is combined with data from the Wide-field Infrared Survey Explorer (WISE) satellite, the correct rotation period can be successfully derived. Although WISE observed in mid-IR wavelengths, we show that for the period and spin determination, these data can be modelled as reflected light. The absolute fluxes are not required since only relative variation of the flux over the rotation is sufficient to determine the period. We also discuss the potential of combining all WISE data with the Lowell photometric database to create physical models of thousands of asteroids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Alí-Lagoa, V., Lionni, L., Delbo, M., et al. 2014, Astron. Astrophys., 561, A45Google Scholar
Almeida, R., Angeli, C. A., Duffard, R., & Lazzaro, D. 2004, Astron. Astrophys., 415, 403Google Scholar
Bowell, E., Oszkiewicz, D. A., Wasserman, L. H., et al. 2014, Meteoritics and Planetary Science, 49, 95Google Scholar
Connelly, R. & Ostro, S. J. 1984, Geometriae Dedicata, 17, 87Google Scholar
Delbo, M. 2004, PhD thesis – Freie Univesitaet Berlin, 1Google Scholar
Delbo, M., dell'Oro, A., Harris, A. W., Mottola, S., & Mueller, M. 2007, Icarus, 190, 236Google Scholar
Delbó, M., Harris, A. W., Binzel, R. P., Pravec, P., & Davies, J. K. 2003, Icarus, 166, 116Google Scholar
Delbo, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. 2016, in Asteroids IV, in press, ed. Michel, P., DeMeo, F., & Bottke, W. (Tucson: University of Arizona Press)Google Scholar
Ďurech, J., Kaasalainen, M., Warner, B. D., et al. 2009, Astron. Astrophys., 493, 291CrossRefGoogle Scholar
Ďurech, J., Carry, B., Delbo, M., Kaasalainen, M., & Viikinkoski, M. 2016, in Asteroids IV, in press, ed. Michel, P., DeMeo, F., & Bottke, W. (Tucson: University of Arizona Press)Google Scholar
Ďurech, J., Hanuš, J., & Vančo, R. 2015, Astronomy and Computing, 13, 80Google Scholar
Hanuš, J., Delbo', M., Ďurech, J., & Alí-Lagoa, V. 2015, Icarus, 256, 101Google Scholar
Hanuš, J., Ďurech, J., Brož, M., et al. 2013, Astron. Astrophys., 551, A67CrossRefGoogle Scholar
Hanuš, J., Ďurech, J., Brož, M., et al. 2011, Astron. Astrophys., 530, A134Google Scholar
Hanuš, J., Ďurech, J., & others. 2016, Astron. Astrophys., in pressGoogle Scholar
Harris, A. W., Mueller, M., Delbó, M., & Bus, S. J. 2005, Icarus, 179, 95CrossRefGoogle Scholar
Kaasalainen, M. 2004, Astron. Astrophys., 422, L39CrossRefGoogle Scholar
Kaasalainen, M. & Lamberg, L. 2006, Inverse Problems, 22, 749Google Scholar
Kaasalainen, M. & Ďurech, J. 2007, in Near Earth Objects, our Celestial Neighbors: Opportunity and Risk, ed. Milani, A., Valsecchi, G. B., & Vokrouhlický, D. (Cambridge: Cambridge University Press), 151Google Scholar
Kaasalainen, M., Mottola, S., & Fulchignomi, M. 2002, in Asteroids III, ed. Bottke, W. F., Cellino, A., Paolicchi, P., & Binzel, R. P. (Tucson: University of Arizona Press), 139150Google Scholar
Kaasalainen, M., Torppa, J., & Muinonen, K. 2001, Icarus, 153, 37Google Scholar
Mainzer, A., Bauer, J., Grav, T., et al. 2011, Astrophys. J., 731, 53Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011, Astrophys. J., 741, 68Google Scholar
Oszkiewicz, D., Muinonen, K., Bowell, E., et al. 2011, Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1919CrossRefGoogle Scholar
Rozitis, B., Maclennan, E., & Emery, J. P. 2014, Nature, 512, 174Google Scholar
Warner, B. D., Harris, A. W., & Pravec, P. 2009, Icarus, 202, 134CrossRefGoogle Scholar
Waszczak, A., Chang, C.-K., Ofek, E. O., et al. 2015, Astron. J., 150, 75Google Scholar
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, Astron. J., 140, 1868CrossRefGoogle Scholar