Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T09:54:17.940Z Has data issue: false hasContentIssue false

Winds of OB stars: impact of metallicity, rotation and binary interaction

Published online by Cambridge University Press:  16 August 2023

Varsha Ramachandran*
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Winds of massive stars are an important ingredient in determining their evolution, final remnant mass, and feedback to the surrounding interstellar medium. We compare empirical results for OB star winds at low metallicity with theoretical predictions. Observations suggest very weak winds at SMC metallicity, but there are exceptions. We identified promising candidates for rotationally enhanced mass-loss rates with two component wind and partially stripped stars hiding among OB stars with slow but dense wind in the SMC. A preliminary analysis of these systems, derived parameters, and their implications are discussed. Finally, we briefly discuss the interaction of OB winds near black holes in X-ray binaries.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Björklund, R., Sundqvist, J. O., Puls, J., & Najarro, F. 2021, A&A, 648, A36 CrossRefGoogle Scholar
Bjorkman, J. E., Ignace, R., Tripp, T. M., & Cassinelli, J. P. 1994, ApJ, 435, 416 CrossRefGoogle Scholar
Bodensteiner, J., Shenar, T., Mahy, L., et al. 2020, A&A, 641, A43 CrossRefGoogle Scholar
Bouret, J.-C., Lanz, T., Hillier, D. J., et al. 2003, ApJ, 595, 1182 CrossRefGoogle Scholar
Bouret, J. C., Lanz, T., Hillier, D. J., et al. 2015, MNRAS, 449, 1545 CrossRefGoogle Scholar
Bouret, J. C., Martins, F., Hillier, D. J., et al. 2021, A&A, 647, A134 CrossRefGoogle Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 CrossRefGoogle Scholar
Claeys, J. S. W., de Mink, S. E., Pols, O. R., Eldridge, J. J., & Baes, M. 2011, A&A, 528, A131 CrossRefGoogle Scholar
de Mink, S. E., Langer, N., Izzard, R. G., Sana, H., & de Koter, A. 2013, ApJ, 764, 166 CrossRefGoogle Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 1109 CrossRefGoogle Scholar
Frost, A. J., Bodensteiner, J., Rivinius, T., et al. 2022, A&A, 659, L3 CrossRefGoogle Scholar
Götberg, Y., Mink, S. E. d., & Groh, J. H. 2017, Astronomy & Astrophysics, 608, A11, publisher: EDP SciencesCrossRefGoogle Scholar
Gräfener, G. & Hamann, W.-R. 2005, A&A, 432, 633 CrossRefGoogle Scholar
Groh, J. H., Oliveira, A. S., & Steiner, J. E. 2008, A&A, 485, 245 CrossRefGoogle Scholar
Hillier, D. J., Lanz, T., Heap, S. R., et al. 2003, ApJ, 588, 1039 CrossRefGoogle Scholar
Klencki, J., Istrate, A., Nelemans, G., & Pols, O. 2022, A&A, 662, A56 CrossRefGoogle Scholar
Lamers, H. J. G. & Pauldrach, A. W. A. 1991, A&A, 244, L5 Google Scholar
Liu, J., Zhang, H., Howard, A. W., et al. 2019, Nature, 575, 618 CrossRefGoogle Scholar
Lucy, L. B. 2012, A&A, 543, A18 CrossRefGoogle Scholar
Maeder, A. & Meynet, G. 2000, ARA&A, 38, 143 CrossRefGoogle Scholar
Martins, F., Schaerer, D., Hillier, D. J., & Heydari-Malayeri, M. 2004, A&A, 420, 1087 CrossRefGoogle Scholar
Massa, D. 1995, ApJ, 438, 376 CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603 CrossRefGoogle Scholar
Müller, P. E. & Vink, J. S. 2014, A&A, 564, A57 CrossRefGoogle Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., et al. 2007, Nature, 449, 872 CrossRefGoogle Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJL, 472, L115+CrossRefGoogle Scholar
Paczyński, B. 1967, Acta Astron., 17, 355CrossRefGoogle Scholar
Pietsch, W., Haberl, F., Sasaki, M., et al. 2006, ApJ, 646, 420 CrossRefGoogle Scholar
Prinja, R. K., Massa, D., Fullerton, A. W., Howarth, I. D., & Pontefract, M. 1997, A&A, 318, 157 Google Scholar
Puls, J., Vink, J. S., & Najarro, F. 2008, A&A Rev., 16, 209 Google Scholar
Ramachandran, V., Hamann, W. R., Oskinova, L. M., et al. 2019, A&A, 625, A104 CrossRefGoogle Scholar
Ramachandran, V., Oskinova, L. M., & Hamann, W. R. 2021, A&A, 646, A16 CrossRefGoogle Scholar
Ramachandran, V., Oskinova, L. M., Hamann, W. R., et al. 2022, arXiv e-prints, arXiv:2208.07773Google Scholar
Rickard, M. J., Hainich, R., Hamann, W. R., et al. 2022, arXiv e-prints, arXiv:2207.09333Google Scholar
Rivinius, T., Baade, D., Hadrava, P., Heida, M., & Klement, R. 2020, A&A, 637, L3 CrossRefGoogle Scholar
Schootemeijer, A., Götberg, Y., de Mink, S. E., Gies, D., & Zapartas, E. 2018, A&A, 615, A30 CrossRefGoogle Scholar
Shao, Y. & Li, X.-D. 2014, ApJ, 796, 37 CrossRefGoogle Scholar
Shenar, T., Gilkis, A., Vink, J. S., Sana, H., & Sand er, A. A. C. 2020, A&A, 634, A79CrossRefGoogle Scholar
Shepard, K., Gies, D. R., Lester, K. V., et al. 2020, ApJ, 888, 82 CrossRefGoogle Scholar
Vanbeveren, D. 1991, A&A, 252, 159 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574 CrossRefGoogle Scholar
Wang, L., Gies, D. R., Peters, G. J., et al. 2021, AJ, 161, 248 CrossRefGoogle Scholar
Yoon, S. C., Woosley, S. E., & Langer, N. 2010, ApJ, 725, 940 CrossRefGoogle Scholar