Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T15:33:04.693Z Has data issue: false hasContentIssue false

A wide angle chemical survey of the Sagittarius dwarf Spheroidal galaxy

Published online by Cambridge University Press:  30 October 2019

L. Sbordone
Affiliation:
ESO - European Southern Observatory Alonso de Cordova 3104, Vitacura, Santiago,Chile email: [email protected]
L. Monaco
Affiliation:
Departamento de Ciencias Fisicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile
S. Duffau
Affiliation:
Departamento de Ciencias Fisicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile
P. Bonifacio
Affiliation:
Observatoire de Paris, PSL University, CNRS, GEPI, Place Jules Janssen, 92195, Meudon, France
E. Caffau
Affiliation:
Observatoire de Paris, PSL University, CNRS, GEPI, Place Jules Janssen, 92195, Meudon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the status of an ongoing project to map the detailed chemical abundances of stars across the main body of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph). The Sgr dSph is the closest known dwarf galaxy, and is being tidally destroyed by its interaction with the Milky Way (MW), leaving behind a massive stellar stream. Sgr dSph is a chemically outstanding object, with peculiar abundance ratios, clear center-outskirts abundance gradients, and spanning more than 3 orders of magnitude in metallicity. We present here detailed abundances from UVES@VLT spectra for more than 50 giants across 8 fields along the major and minor axes of Sgr dSph, and 5 more outside the galaxy main body, but possibly associated to its stellar stream.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bellazzini, M., & Ibata, R. 2018, ArXiv e-prints, arXiv:1809.01102.Google Scholar
Bellazzini, M., Ibata, R. A., Chapman, S. C., et al. 2008, AJ, 136, 1147 CrossRefGoogle Scholar
Busso, M., Gallino, R., & Wasserburg, G. J. 1999, Annual Review of Astronomy and Astrophysics, 37, 239.CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2014, A&A, 561, A87.Google Scholar
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117.Google Scholar
Dekker, H., D’Odorico, S., Kaufer, A., et al. 2000, Optical and IR Telescope Instrumentation and Detectors, 534.Google Scholar
Gallino, R., Arlandini, C., Busso, M., et al. 1998, ApJ, 497, 388.CrossRefGoogle Scholar
Geisler, D., Smith, V. V., Wallerstein, G., et al. 2005, AJ, 129, 1428.CrossRefGoogle Scholar
Gilmore, G., Randich, S., Asplund, M., et al. 2012, The Messenger, 147, 25.Google Scholar
Giuffrida, G., Sbordone, L., Zaggia, S., et al. 2010, A&A, 513, A62.Google Scholar
Giuffrida, G., Sbordone, L., Zaggia, S., et al. 2010, The Messenger, 141, 29.Google Scholar
Hansen, C. J., El-Souri, M., Monaco, L., et al. 2018, ApJ, 855, 83.CrossRefGoogle Scholar
Heiter, U., Lind, K., Asplund, M., et al. 2015, PhysScr, 90, 54010.Google Scholar
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1995, MNRAS, 277, 781.CrossRefGoogle Scholar
Koch, A., McWilliam, A., Grebel, E. K., et al. 2008, ApJ, 688, L13.CrossRefGoogle Scholar
Law, D. R., & Majewski, S. R. 2010, ApJ, 714, 229.CrossRefGoogle Scholar
Letarte, B. 2007, Ph.D. Thesis.Google Scholar
Letarte, B., Hill, V., Jablonka, P., et al. 2006, A&A, 453, 547.Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., et al. 2003, ApJ, 599, 1082.CrossRefGoogle Scholar
McWilliam, A., Wallerstein, G., & Mottini, M. 2013, ApJ, 778, 149.CrossRefGoogle Scholar
Monaco, L., Bellazzini, M., Bonifacio, P., et al. 2005, A&A, 441, 141.Google Scholar
Monaco, L., Bellazzini, M., Ferraro, F. R., et al. 2004, MNRAS, 353, 874.CrossRefGoogle Scholar
Mottini, M., Wallerstein, G., & McWilliam, A. 2008, AJ, 136, 614.CrossRefGoogle Scholar
Pasquini, L., Avila, G., Allaert, E., et al. 2000, Optical and IR Telescope Instrumentation and Detectors, 129.Google Scholar
Ruchti, G. R., Read, J. I., Feltzing, S., et al. 2015, MNRAS, 450, 2874.CrossRefGoogle Scholar
Sbordone, L., Monaco, L., Moni Bidin, C., et al. 2015, A&A, 579, A104.Google Scholar
Sbordone, L., Caffau, E., Bonifacio, P., et al. 2014, A&A, 564, A109.Google Scholar
Sbordone, L., Bonifacio, P., Buonanno, R., et al. 2007, A&A, 465, 815.Google Scholar
Sbordone, L., Bonifacio, P., Marconi, G., et al. 2005, A&A, 437, 905.Google Scholar
Tang, B., Fernández-Trincado, J. G., Geisler, D., et al. 2018, ApJ, 855, 38.CrossRefGoogle Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, Annual Review of Astronomy and Astrophysics, 47, 371.CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., et al. 2004, AJ, 128, 1177.CrossRefGoogle Scholar