Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T00:03:46.088Z Has data issue: false hasContentIssue false

Why do galactic spins flip in the cosmic web? A Theory of Tidal Torques near saddles

Published online by Cambridge University Press:  12 October 2016

Christophe Pichon*
Affiliation:
Institut d'Astrophysique de Paris & UPMC, 98 bis Boulevard Arago, 75014, Paris, France
Sandrine Codis
Affiliation:
Institut d'Astrophysique de Paris & UPMC, 98 bis Boulevard Arago, 75014, Paris, France
Dmitry Pogosyan
Affiliation:
University of Alberta, 11322-89 Avenue, Edmonton, Alberta, T6G 2G7, Canada
Yohan Dubois
Affiliation:
Institut d'Astrophysique de Paris & UPMC, 98 bis Boulevard Arago, 75014, Paris, France
Vincent Desjacques
Affiliation:
Université de Genève 24, quai Ernest Ansermet. 1211, Genève, Switzerland
Julien Devriendt
Affiliation:
Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Filaments of the cosmic web drive spin acquisition of disc galaxies. The point process of filament-type saddle represent best this environment and can be used to revisit the Tidal Torque Theory in the context of an anisotropic peak (saddle) background split. The constrained misalignment between the tidal tensor and the Hessian of the density field generated in the vicinity of filament saddle points simply explains the corresponding transverse and longitudinal point-reflection symmetric geometry of spin distribution. It predicts in particular an azimuthal orientation of the spins of more massive galaxies and spin alignment with the filament for less massive galaxies. Its scale dependence also allows us to relate the transition mass corresponding to the alignment of dark matter halos' spin relative to the direction of their neighboring filament to this geometry, and to predict accordingly it's scaling with the mass of non linearity, as was measured in simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bond, J. R., Cole, S., Efstathiou, G. & Nick, K. 1991 ApJ, 379, 440 Google Scholar
Codis, S., Pichon, C., Devriendt, J., Slyz, A. et al. 2012 MNRAS, 427, 3320 CrossRefGoogle Scholar
Codis, S., Gavazzi, R., Dubois, Y., Pichon, C. et al. 2014 ArXiv e-prints Google Scholar
Hahn, O., Porciani, C., Carollo, C. M., & Dekel, A. 2007, MNRAS, 375, 489 Google Scholar
Heavens, A., Refregier, A. & Heymans, C. 2000 MNRAS, 319, 649 CrossRefGoogle Scholar
Laigle, C., Pichon, C., Codis, S., Dubois, Y. et al. 2014, ArXiv e-prints Google Scholar
Libeskind, N. I., et al. 2013, MNRAS, 428, 2489 CrossRefGoogle Scholar
Peacock, J. A. & Heavens, F. 1990, MNRAS, 243, 133 Google Scholar
Pichon, C. et al. 2011, MNRAS, 418, 2493 Google Scholar
Pogosyan, D., Bond, J. R., & Kofman, L. 1998, JRASC, 92, 313 Google Scholar
Pogosyan, D., et al. 2009, MNRAS, 396, 635 Google Scholar
Schäfer, B. M. & Merkel, P. M. 2012, MNRAS, 421, 2751 Google Scholar
Tempel, E. & Libeskind, N. I. 2013, ApJL, 775, L42 Google Scholar