Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:47:03.017Z Has data issue: false hasContentIssue false

Which attenuation curves for star-forming galaxies?

Published online by Cambridge University Press:  10 June 2020

Véronique Buat
Affiliation:
Aix Marseille Univ, CNRS, CNES, LAM Marseille, France email: [email protected]
David Corre
Affiliation:
Aix Marseille Univ, CNRS, CNES, LAM Marseille, France email: [email protected]
Médéric Boquien
Affiliation:
Centro de Astronomía (CITEVA), Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
Katarzyna Małek
Affiliation:
Aix Marseille Univ, CNRS, CNES, LAM Marseille, France email: [email protected] National Centre for Nuclear Research, ul. Hoza 69, 00-681 Warszawa, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dust attenuation shapes the spectral energy distributions of galaxies and any modelling and fitting procedure of their spectral energy distributions must account for this process. We present results of two recent works dedicated at measuring the dust attenuation curves in star forming galaxies at redshift from 0.5 to 3, by fitting continuum (photometric) and line (spectroscopic) measurements simultaneously with CIGALE using variable attenuation laws based on flexible recipes. Both studies conclude to a large variety of effective attenuation laws with an attenuation law flattening when the obscuration increases. An extra attenuation is found for nebular lines. The comparison with radiative transfer models implies a flattening of the attenuation law up to near infrared wavelengths, which is well reproduced with a power-laws recipe inspired by the Charlot and Fall recipe. Here we propose a global modification of the Calzetti attenuation law to better reproduce the results of radiative transfer models.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Boquien, M., Burgarella, D., Roehlly, Y., et al. 2018, arXiv:181103094BGoogle Scholar
Buat, V., Giovannoli, E., Heinis, S., et al. 2011, A&A, 533, A93Google Scholar
Buat, V., Boquien, M., Malek, K., et al. 2018, A&A, 619, A135Google Scholar
Calzetti, C., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 68210.1086/308692CrossRefGoogle Scholar
Charlot, S. & Fall, S. M. 2000, ApJ, 539, 718CrossRefGoogle Scholar
Chevallard, J., Charlot, S., Wandelt, B. & Wild, V., et al. 2013, MNRAS, 462, 1415CrossRefGoogle Scholar
Corre, D. 2018, PhD thesis, Aix-Marseille UniversitéGoogle Scholar
Kriek, M. & Conroy, C. 2013, ApJ, 775, L16CrossRefGoogle Scholar
Lo Faro, B., Buat, V., Roehlly. Y., et al. 2017, MNRAS, 472, 1372CrossRefGoogle Scholar
Salmon, B., Papovich, C., Long, J., et al. 2016, ApJ, 827, 20CrossRefGoogle Scholar
Seon, K.-I. & Draine, B. T. 2013, ApJ, 833, 201CrossRefGoogle Scholar