Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T14:00:06.143Z Has data issue: false hasContentIssue false

Where is the electric current driven in the Blandford-Znajek process?

Published online by Cambridge University Press:  23 June 2017

Kenji Toma
Affiliation:
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan; email: [email protected]
Fumio Takahara
Affiliation:
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Blandford-Znajek process, the steady electromagnetic energy extraction from a rotating black hole, is widely believed to work for driving relativistic jets, although it is still under debate where the electric current is driven. We address this issue analytically by investigating the time-dependent state in the Boyer-Lindquist and Kerr-Schild coordinate systems. This analysis suggests that a non-ideal magnetohydrodynamic region is required in the time-dependent state, while not in the steady state.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asada, K. & Nakamura, M. 2012, ApJ, 745, L28 CrossRefGoogle Scholar
Barkov, M. V. & Komissarov, S. S. 2008, MNRAS, 385, L28 Google Scholar
Beskin, V. S. & Zheltoukhov, A. A. 2013, Astron. Lett., 39, 215 Google Scholar
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 176, 465 CrossRefGoogle Scholar
Contopoulos, I., Kazanas, D., & Papadopoulos, D. B. 2013, ApJ, 765, 113 Google Scholar
Goldreich, P. & Julian, W. H. 1969, ApJ, 157, 869 Google Scholar
Hirotani, K., Takahashi, M., Nitta, S., & Tomimatsu, A. 1992, ApJ, 386, 455 Google Scholar
Kino, M., Takahara, F., Hada, K., et al. 2015, ApJ, 803, 30 Google Scholar
Koide, S. & Baba, T. 2014, ApJ, 792, 88 CrossRefGoogle Scholar
Koide, S., Shibata, K., Kudoh, T., & Meier, D. L. 2002, Science, 295, 1688 Google Scholar
Komissarov, S. S. 2001, MNRAS, 326, L41 Google Scholar
Komissarov, S. S. 2004, MNRAS, 350, 427 Google Scholar
Komissarov, S. S. 2005, MNRAS, 359, 801 Google Scholar
Komissarov, S. S. 2009, J. Korean Phys. Soc., 54, 2503 Google Scholar
Komissarov, S. S., Vlahakis, N., Königl, A., & Barkov, M. V. 2009, MNRAS, 394, 1182 Google Scholar
Lasota, J.-P., Gourgoulhon, E., Abramowicz, M., et al. 2014, PRD, 89, 024041 Google Scholar
Lyubarsky, Y. 2009, ApJ, 698, 1570 Google Scholar
McKinney, J. C. & Gammie, C. F. 2004, ApJ, 611, 977 Google Scholar
Mertens, F., Lobanov, A. P., Walker, R. C., & Hardee, P. E. 2016, A & A, 595, 54 Google Scholar
Okamoto, I. 2006, PASJ, 58, 1047 Google Scholar
Porth, O. & Komissarov, S. S. 2015, MNRAS, 452, 1089 Google Scholar
Punsly, B., & Coroniti, F. V. 1989 PRD, 40, 3834 Google Scholar
Ruiz, M., Palenzuela, C., Galeazzi, F., & Bona, C. 2012, MNRAS, 423, 1300 Google Scholar
Takahashi, M., Nitta, S., Tatematsu, Y., & Tomimatsu, A. 1990, ApJ, 363, 206 Google Scholar
Tchekhovskoy, R., Narayan, R., & McKinney, J. C. 2011, MNRAS, 418, L79 CrossRefGoogle Scholar
Thorne, K., et al. 1986, The Membrane Paradigm (Yale University Press, New Haven)Google Scholar
Toma, K. & Takahara, F. 2013, PTEP, 2013, 3E02 Google Scholar
Toma, K. & Takahara, F. 2014, MNRAS, 442, 2855 Google Scholar
Toma, K. & Takahara, F. 2016, PTEP, 2016, 3E01 Google Scholar
Wald, R. M. 1974, PRD, 10, 1680 Google Scholar