Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:52:44.716Z Has data issue: false hasContentIssue false

What to Expect from Transiting Multiplanet Systems

Published online by Cambridge University Press:  01 May 2008

Daniel C. Fabrycky*
Affiliation:
Harvard-Smithsonian Center for Astrophysics60 Garden St, MS-51, Cambridge, MA 02138 email: [email protected] Michelson Fellow
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

So far radial velocity measurements have discovered ~25 stars to host multiple planets. The statistics imply that many of the known hosts of transiting planets should have additional planets, yet none have been solidly detected. They will be soon, via complementary search methods of RV, transit-time variations of the known planet, and transits of the additional planet. When they are found, what can transit measurements add to studies of multiplanet dynamical evolution? First, mutual inclinations become measurable, for comparison to the solar system's disk-like configuration. Such measurements will give important constraints to planet-planet scattering models, just as the radial velocity measurements of eccentricity have done. Second, the Rossiter-McLaughlin effect measures stellar obliquity, which can be modified by two-planet dynamics with a tidally evolving inner planet. Third, transit-time variations are exquisitely sensitive to planets in mean motion resonance. Two planets differentially migrating in the disk can establish such resonances, and tidal evolution of the planets can break them, so the configuration and frequency of these resonances as a function of planetary parameters will constrain these processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Adams, F. C., Laughlin, G., & Bloch, A. M. 2008, ApJ in press (arxiv:0805.1681)Google Scholar
Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567CrossRefGoogle Scholar
Agol, E. & Steffen, J. H. 2007, MNRAS, 374, 941CrossRefGoogle Scholar
Beaugé, C., Michtchenko, T. A., & Ferraz-Mello, S. 2006, MNRAS, 365, 1160CrossRefGoogle Scholar
Croll, B., Matthews, J. M., Rowe, J. F., Gladman, B., Miller-Ricci, E., Sasselov, D., Walker, G. A. H., Kuschnig, R., Lin, D. N. C., Guenther, D. B., Moffat, A. F. J., Rucinski, S. M., & Weiss, W. W. 2007a, ApJ, 671, 2129CrossRefGoogle Scholar
Croll, B., Matthews, J. M., Rowe, J. F., Kuschnig, R., Walker, A., Gladman, B., Sasselov, D., Cameron, C., Walker, G. A. H., Lin, D. N. C., Guenther, D. B., Moffat, A. F. J., Rucinski, S. M., & Weiss, W. W. 2007b, ApJ, 658, 1328CrossRefGoogle Scholar
Fabrycky, D. 2008, ApJ, 677, L117CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Fabrycky, D. C., Johnson, E. T., & Goodman, J. 2007, ApJ, 665, 754CrossRefGoogle Scholar
Fleming, S. W., Kane, S. R., McCullough, P. R., & Chromey, F. R. 2008, MNRAS, 386, 1503CrossRefGoogle Scholar
Gaudi, B. S. & Winn, J. N. 2007, ApJ, 655, 550CrossRefGoogle Scholar
Holman, M. J. & Murray, N. W. 2005, Science, 307, 1288CrossRefGoogle Scholar
Mardling, R. A. 2007, MNRAS, 382, 1768CrossRefGoogle Scholar
Miller-Ricci, E., Rowe, J. F., Sasselov, D., Matthews, J. M., Guenther, D. B., Kuschnig, R., Moffat, A. F. J., Rucinski, S. M., Walker, G. A. H., & Weiss, W. W. 2008a, ApJ in press (arxiv:0802.0718)Google Scholar
Miller-Ricci, E., Rowe, J. F., Sasselov, D., Matthews, J. M., Kuschnig, R., Croll, B., Guenther, D. B., Moffat, A. F. J., Rucinski, S. M., Walker, G. A. H., & Weiss, W. W. 2008b, ApJ in press (arxiv:0802.2722)Google Scholar
Miralda-Escudé, J. 2002, ApJ, 564, 1019CrossRefGoogle Scholar
Peale, S. J. & Greenberg, R. J. 1980, in Lunar and Planetary Inst. Technical Report, Vol. 11, Lunar and Planetary Institute Conference Abstracts, 871–873Google Scholar
Ribas, I., Font-Ribera, A., & Beaulieu, J.-P. 2008, ApJ, 677, L59CrossRefGoogle Scholar
Steffen, J. H. & Agol, E. 2005, MNRAS, 364, L96CrossRefGoogle Scholar
Terquem, C. & Papaloizou, J. C. B. 2007, ApJ, 654, 1110CrossRefGoogle Scholar
Torres, G., Winn, J. N., & Holman, M. J. 2008, ApJ, 677, 1324CrossRefGoogle Scholar
vanBelle, G. T. Belle, G. T. 2008, PASP, 120, 617Google Scholar
Winn, J. N. & Holman, M. J. 2005, ApJ, 628, L159CrossRefGoogle Scholar
Wu, Y. & Goldreich, P. 2002, ApJ, 564, 1024CrossRefGoogle Scholar