Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T10:38:08.607Z Has data issue: false hasContentIssue false

What controls the large-scale magnetic fields of M dwarfs?

Published online by Cambridge University Press:  07 August 2014

T. Gastine
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max Planck Straße 2, 37191 Katlenburg-Lindau, Germany email: [email protected]
J. Morin
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund Platz, 37077 Göttingen, Germany LUPM, Université de Montpellier and CNRS, Place E. Bataillon, 34090 Montpellier, France
L. Duarte
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max Planck Straße 2, 37191 Katlenburg-Lindau, Germany email: [email protected]
A. Reiners
Affiliation:
Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund Platz, 37077 Göttingen, Germany
U. Christensen
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max Planck Straße 2, 37191 Katlenburg-Lindau, Germany email: [email protected]
J. Wicht
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max Planck Straße 2, 37191 Katlenburg-Lindau, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of active M dwarfs show a broad variety of large-scale magnetic fields encompassing dipole-dominated and multipolar geometries. We detail the analogy between some anelastic dynamo simulations and spectropolarimetric observations of 23 M stars. In numerical models, the relative contribution of inertia and Coriolis force –estimated by the so-called local Rossby number– is known to have a strong impact on the magnetic field geometry. We discuss the relevance of this parameter in setting the large-scale magnetic field of M dwarfs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Christensen, U. R. & Aubert, J. 2006, Geophys. J. Int., 166, 97Google Scholar
Christensen, U. R. 2010, Space Sci. Rev., 152, 565CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Cameron, A. C., et al. 2006, Science, 311, 633Google Scholar
Donati, J.-F., Morin, J., Petit, P., et al. 2008, MNRAS, 390, 545Google Scholar
Duarte, L., Gastine, T., & Wicht, J., 2013, Physics of the Earth and Planetary Interiors, 222, 22Google Scholar
Gastine, T. & Wicht, J. 2012, Icarus, 219, 428Google Scholar
Gastine, T., Duarte, L., & Wicht, J. 2012, A&A, 546, A19Google Scholar
Gastine, T., Morin, J., Duarte, L., Reiners, A., Christensen, U. R., & Wicht, J., 2013, A&A, 549, L5Google Scholar
Jones, C. A., Boronski, P., Brun, A. S., et al. 2011, Icarus, 216, 120Google Scholar
Kiraga, M. & Stepien, K. 2007, Acta Astronomica, 57, 149Google Scholar
Morin, J., Donati, J.-F., Forveille, T., et al. 2008a, MNRAS, 384, 77Google Scholar
Morin, J., Donati, J., Petit, P., et al. 2008b, MNRAS, 390, 567CrossRefGoogle Scholar
Morin, J., Donati, J.-F., Petit, P., et al. 2010, MNRAS, 407, 2269CrossRefGoogle Scholar
Schrinner, M., Petitdemange, L., & Dormy, E. 2012, ApJ, 752, 121CrossRefGoogle Scholar
Semel, M. 1989, A&A, 225, 456Google Scholar
Simitev, R. D. & Busse, F. H. 2009, Europhysics Letters, 85, 19001Google Scholar
Wicht, J. 2002, Physics of the Earth and Planetary Interiors, 132, 281Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., 2013a, Icarus, 225, 185Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., & Duarte, L. D. V., 2013b, ApJ, 774, 6Google Scholar