Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T20:13:30.310Z Has data issue: false hasContentIssue false

What can Fermi tell us about magnetars?

Published online by Cambridge University Press:  20 March 2013

H. Tong
Affiliation:
Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China email: [email protected]
R. X. Xu
Affiliation:
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have analyzed the physical implications of Fermi observations of magnetars. Observationally, no significant detection is reported in Fermi observations of all magnetars. Then there are conflicts between outer gap model in the case of magnetars and Fermi observations. One possible explanation is that magnetars are wind braking instead of magnetic dipole braking. In the wind braking scenario, magnetars are neutron stars with strong multipole field. A strong dipole field is no longer required. A magnetism-powered pulsar wind nebula and a braking index smaller than three are the two predictions of wind braking of magnetars. Future deeper Fermi observations will help us make clear whether they are wind braking or magnetic dipole braking. It will also help us to distinguish between the magnetar model and the accretion model for AXPs and SGRs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 725, L73CrossRefGoogle Scholar
Cheng, K. S. & Zhang, L. 2001, ApJ, 562, 918CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C. 1992, ApJ, 392, L9CrossRefGoogle Scholar
Liu, Z. Y., Tong, H., & Yuan, J. P. 2012, arXiv:1210.2799Google Scholar
Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944CrossRefGoogle Scholar
Rea, N., Pons, J. A., Torres, D. F., et al. 2012, ApJ, 748, L12CrossRefGoogle Scholar
Sasmaz Mus, S. & Gogus, E. 2010, ApJ, 723, 100Google Scholar
Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574, 332CrossRefGoogle Scholar
Tong, H., Song, L. M., & Xu, R. X. 2010, ApJ, 725, L196CrossRefGoogle Scholar
Tong, H., Song, L. M. & Xu, R. X. 2011, ApJ, 738, 31CrossRefGoogle Scholar
Tong, H. & Xu, R. X. 2011, Int. Jour. Mod. Phys. E, 20, 15CrossRefGoogle Scholar
Tong, H. & Xu, R. X. 2012, ApJ, 757, L10Google Scholar
Tong, H., Xu, R. X., Song, L. M., & Qiao, G. J. 2012, arXiv:1205.1626Google Scholar
Zhang, B. 2003, Astrophysics and Space Science Library 298 27 (astro-ph/0212016)CrossRefGoogle Scholar