Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:05:40.166Z Has data issue: false hasContentIssue false

Void Dynamics

Published online by Cambridge University Press:  12 October 2016

Nelson D. Padilla
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Centro de Astro-Ingenierí a, Universidad Católica de Chile
Dante Paz
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Instituto de Astronomí a Teórica y Experimental (IATE), Laprida 922, Córdoba, Argentina
Marcelo Lares
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Instituto de Astronomí a Teórica y Experimental (IATE), Laprida 922, Córdoba, Argentina
Laura Ceccarelli
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Instituto de Astronomí a Teórica y Experimental (IATE), Laprida 922, Córdoba, Argentina
Diego Garcí a Lambas
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Instituto de Astronomí a Teórica y Experimental (IATE), Laprida 922, Córdoba, Argentina
Yan-Chuan Cai
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Institute for Computational Cosmology Durham University South Road, Durham, DH1 3LE, UK
Baojiu Li
Affiliation:
Instituto de Astrofí sica, Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile email: [email protected] Institute for Computational Cosmology Durham University South Road, Durham, DH1 3LE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Cai, Y.-C., Padilla, N., & Li, B., 2014, submitted to MNRAS, arXiv:1410.1510Google Scholar
Ceccarelli, L., Padilla, N., Valotto, C., & Lambas, D. G., 2006, MNRAS, 373, 1440 Google Scholar
Ceccarelli, L., Paz, D., Lares, M., Padilla, N., Lambas, , & Garca, D., 2013, MNRAS, 434, 1435 CrossRefGoogle Scholar
Clampitt, J., Cai, Y.-C., & Li, B., 2013, MNRAS, 431, 749 Google Scholar
Colberg, J. M., et al. 2008, MNRAS, 387, 933 Google Scholar
Hu, W. & Sawicki, I., 2007, Phys. Rev., D76, 064004 Google Scholar
Jennings, E., Baugh, C. M., Li, B., Zhao, G.-B., & Koyama, K., 2012, MNRAS, 425, 2128 CrossRefGoogle Scholar
Li, B., Zhao, G., Teyssier, R., & Koyama, K., 2012, J. Cosmo. As- tropart. Phys., 01, 051 CrossRefGoogle Scholar
Nadathur, S., et al., 2014, ArXiv e-printsGoogle Scholar
Padilla, N. D., Ceccarelli, L., & Lambas, D., 2005, MNRAS, 363, 977 Google Scholar
Paz, D., Lares, M., Ceccarelli, L., Padilla, N., & Lambas, D. G., 2013, MNRAS, 436, 3480 Google Scholar
Peebles, P. J. E., 1979, AJ, 84, 730 Google Scholar
Sheth, R. K. & van de Weygaert, R., 2004, MNRAS, 350, 517 CrossRefGoogle Scholar