Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T17:07:40.307Z Has data issue: false hasContentIssue false

Very Massive Stars: Near and Far

Published online by Cambridge University Press:  29 August 2024

Sébastien Martinet*
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Georges Meynet
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Sylvia Ekström
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Cyril Georgy
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Lionel Haemmerlé
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Devesh Nandal
Affiliation:
Geneva Observatory, University of Geneva, Chemin Pegasi 51, CH-1290 Versoix, Switzerland
Raphael Hirschi
Affiliation:
Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK Institute for Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In addition to being spectacular objects, very massive stars (VMS) are suspected to have a tremendous impact on their environment and on the whole cosmic evolution. The nucleosynthesis both during their advanced stages and their final explosion likely contribute greatly to the overall enrichment of the Universe. Their resulting Supernovae are candidates for the most superluminous events and their extreme conditions lead also to very important radiative and mechanical feedback effects, from local to cosmic scale. With the recent implementation of a new equation of state in the GENEC stellar evolution code, appropriate for describing the conditions in the central regions of very massive stars in the advanced phases, we present new results on VMS evolution from Population III to solar metallicity. We explore their evolution and final fate as potential (P)PISNe across the cosmic time. We compare our results to recent spectroscopic observations of VMS in the Large Magellanic Cloud (LMC). We also underline the important radiative feedback of Population III VMS during the reionization epoch and the chemical contribution of these stars at high metallicity, especially for short-lived radionuclei.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bestenlehner, J. M., et al. 2014, A&A, 570, A38 CrossRefGoogle Scholar
Bestenlehner, J. M., et al. 2020, MNRAS, 499, 1918 Google Scholar
Brands, S. A., et al. 2022, arXiv e-prints, arXiv:2202.11080Google Scholar
Cassinelli, J. P., Mathis, J. S., & Savage, B. D. 1981, Science, 212, 1497 Google Scholar
Crowther, P. A., Lennon, D. J., & Walborn, N. R. 2006, A&A, 446, 279 Google Scholar
Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., & Kassim, H. A. 2010, MNRAS, 408, 731 CrossRefGoogle Scholar
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&AS, 72, 259 Google Scholar
Eggenberger, P., et al. 2021, A&A, 652, A137 Google Scholar
Farmer, R., Renzo, M., de Mink, S. E., Marchant, P., & Justham, S. 2019, ApJ, 887, 53 Google Scholar
Georgy, C., Saio, H., & Meynet, G. 2014, MNRAS, 439, L6 Google Scholar
Gräfener, G., & Hamann, W. R. 2008, A&A, 482, 945 CrossRefGoogle Scholar
Groenewegen, M. A. T. 2012 a, A&A, 540, A32Google Scholar
Groenewegen, M. A. T. 2012 b, A&A, 541, C3Google Scholar
Higgins, E. R., Sander, A. A. C., Vink, J. S., & Hirschi, R. 2021, MNRAS, 505, 4874 Google Scholar
Kaiser, E. A., Hirschi, R., Arnett, W. D., Georgy, C., Scott, L. J. A., & Cristini, A. 2020, MNRASGoogle Scholar
Maeder, A. 1997, A&A, 321, 134 Google Scholar
Maeder, A., & Meynet, G. 2000, A&A, 361, 159 Google Scholar
Martinet, S., et al. 2021, A&A, 648, A126 CrossRefGoogle Scholar
Martinet, S. 2022, arXiv e-prints, arXiv:2205.15184Google Scholar
McEvoy, C. M., et al. 2015, A&A, 575, A70 Google Scholar
Murphy, L. J., Groh, J. H., Farrell, E., Meynet, G., Ekström, S., Tsiatsiou, S., Hackett, A., & Martinet, S. 2021, MNRASGoogle Scholar
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227Google Scholar
Ramrez-Agudelo, O. H., et al. 2017, A&A, 600, A81 CrossRefGoogle Scholar
Sabn-Sanjulián, C., et al. 2014, A&A, 564, A39 Google Scholar
Sabn-Sanjulián, C. 2017, A&A, 601, A79 Google Scholar
Schneider, F. R. N., et al. 2018, A&A, 618, A73 Google Scholar
Simón-Daz, S., Godart, M., Castro, N., Herrero, A., Aerts, C., Puls, J., Telting, J., & Grassitelli, L. 2017, A&A, 597, A22 Google Scholar
van Loon, J. T., Cioni, M. R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273 Google Scholar
Vink, J. S. 2021, arXiv e-prints, arXiv:2109.08164Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574 Google Scholar
Zahn, J.-P. 1992, A&A, 265, 115 Google Scholar