Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T12:14:48.506Z Has data issue: false hasContentIssue false

Velocity-space substructures and bar resonances in an N-body Milky Way

Published online by Cambridge University Press:  20 January 2023

Tetsuro Asano*
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Michiko S. Fujii
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Junich Baba
Affiliation:
National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588, Japan
Jeroen Bédorf
Affiliation:
Leiden Observatory, Leiden University, NL-2300RA Leiden, The Netherlands Minds.ai, Inc., Santa Cruz, the United States
Elena Sellentin
Affiliation:
Leiden Observatory, Leiden University, NL-2300RA Leiden, The Netherlands Mathematical Institute, Leiden University, NL-2300RA Leiden, The Netherlands
Simon Portegies Zwart
Affiliation:
Leiden Observatory, Leiden University, NL-2300RA Leiden, The Netherlands
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The velocity-space distribution of the solar neighborhood stars shows complex substructures (moving groups) including the well-known Hercules stream. Recently, the Gaia observation revealed their detailed structures, but their origins are still in debate. We analyzed a high-resolution N-body simulation of a Milky Way (MW)-like galaxy. To find velocity-space distributions similar to that of the solar neighborhood stars, we used Kullback-Leibler divergence (KLD), which is a metric to measure similarities between probability distributions. The KLD analysis shows the time evolution and the spatial variation of the velocity-space distribution. Velocity-space distributions with small KLDs (i.e. high similarities) are frequently but not always detected around in the simulated MW. In the velocity-map with smallest KLD, the velocity-space substructures are made from bar resonances.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Asano, T., Fujii, M. S., Baba, J., Bédorf, J., Sellentin, E., Portegies Zwart, S., 2020, MNRAS 499, 2416 CrossRefGoogle Scholar
Asano, T., Fujii, M. S., Baba, J., Bédorf, J., Sellentin, E., Portegies Zwart, S., 2021, arXiv e-prints, arXiv:2112.00765Google Scholar
Baba, J., Saitoh, T. R., Wada, K., 2013, ApJ 763, 46 CrossRefGoogle Scholar
Bédorf, J., Gaburov, E., Portegies Zwart, S., 2012, Journal of Computational Physics 231, 2825 CrossRefGoogle Scholar
Bédorf, J., Gaburov, E., Fujii, M. S., Nitadori, K., Ishiyama, T., Portegies Zwart, S., 2014, in International Conference for High Performance Computing, Networking, Storage and Analysis, Proc. SC’14, p. 54 Google Scholar
Binney, J., 2020, MNRAS 495, 895 CrossRefGoogle Scholar
Bland-Hawthorn, J., Gerhard, O., 2016, ARAA 54, 529 CrossRefGoogle Scholar
Bovy, J., Leung, H. W., Hunt, J. A. S., Mackereth, J. T., García-Hernández, D. A., Roman-Lopes, A., 2019, MNRAS 490, 4740 CrossRefGoogle Scholar
Ceverino, D., Klypin, A., 2007, MNRAS 379, 1155 CrossRefGoogle Scholar
Chiba, R., Friske, J. K. S., Schönrich, R., 2021, MNRAS 500, 4710 CrossRefGoogle Scholar
Clarke, J. P., Wegg, C., Gerhard, O., Smith, L. C., Lucas, P. W., Wylie, S. M., 2019, MNRAS 489, 3519 CrossRefGoogle Scholar
Dehnen, W., 2000, AJ 119, 800 CrossRefGoogle Scholar
Fujii, M. S., Bédorf, J., Baba, J., Portegies Zwart, S., 2019, MNRAS 482, 1983 CrossRefGoogle Scholar
Collaboration, Gaia et al. 2016, A&A 595, A1 Google Scholar
Collaboration, Gaia et al. 2018, A&A 616, A11 Google Scholar
Collaboration, Gaia et al. 2021, A&A 649, A1 Google Scholar
Hattori, K., Gouda, N., Tagawa, H., Sakai, N., Yano, T., Baba, J., Kumamoto, J., 2019, MNRAS 484, 4540 CrossRefGoogle Scholar
Hunt, J. A. S., Bovy, J., 2018, MNRAS 477, 3945 CrossRefGoogle Scholar
Hunt, J. A. S., Bub, M. W., Bovy, J., Mackereth, J. T., Trick, W. H., Kawata, D., 2019, MNRAS 490, 1026 CrossRefGoogle Scholar
Hunt, J. A. S., Stelea, I. A., Johnston, K. V., Gandhi, S. S., Laporte, C. F. P., Bédorf, J, 2021, MNRAS 508, 1459 CrossRefGoogle Scholar
Kawata, D., Baba, J., Hunt, J. A. S., Schönrich, R., Ciucă, I., Friske, J., Seabroke, G., Cropper, M., 2021, MNRAS 508, 728 CrossRefGoogle Scholar
Khoperskov, S., Gerhard, O., Di Matteo, P., Haywood, M., Katz, D., Khrapov, S., Khoperskov, A., Arnaboldi, M., 2020, A&A 634, L8 Google Scholar
Khoperskov, S., Gerhard, O., 2021, arXiv e-prints, arXiv:2111.15211Google Scholar
Laporte, C. F. P., Minchev, I., Johnston, K. V., Gómez, F. A., 2019, MNRAS 485, 3134 CrossRefGoogle Scholar
Monari, G., Famaey, B., Siebert, A., Wegg, C., Gerhard, O., 2019, A&A 626, A41 Google Scholar
Pérez-Villegas, A., Portail, M., Wegg, C, Gerhard, O., 2017, ApJ 840, L2 CrossRefGoogle Scholar
Reid, M. J., et al., 2019, ApJ 885, 131 CrossRefGoogle Scholar
Sanders, J. L., Smith, L., Evans, N. W., 2019, MNRAS 488, 4552 CrossRefGoogle Scholar
Trick, W. H., Fragkoudi, F., Hunt, J. A. S., Mackereth, J. T., White, S. D. M., 2021, MNRAS 500, 2645 CrossRefGoogle Scholar