Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:24:39.506Z Has data issue: false hasContentIssue false

Velocity fields in and around sunspots at the highest resolution

Published online by Cambridge University Press:  26 August 2011

Carsten Denker
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected] and [email protected]
Meetu Verma
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: [email protected] and [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The flows in and around sunspots are rich in detail. Starting with the Evershed flow along low-lying flow channels, which are cospatial with the horizontal penumbral magnetic fields, Evershed clouds may continue this motion at the periphery of the sunspot as moving magnetic features in the sunspot moat. Besides these well-ordered flows, peculiar motions are found in complex sunspots, where they contribute to the build-up or relaxation of magnetic shear. In principle, the three-dimensional structure of these velocity fields can be captured. The line-of-sight component of the velocity vector is accessible with spectroscopic measurements, whereas local correlation or feature tracking techniques provide the means to assess horizontal proper motions. The next generation of ground-based solar telescopes will provide spectropolarimetric data resolving solar fine structure with sizes below 50 km. Thus, these new telescopes with advanced post-focus instruments act as a ‘zoom lens’ to study the intricate surface flows associated with sunspots. Accompanied by ‘wide-angle’ observations from space, we have now the opportunity to describe sunspots as a system. This review reports recent findings related to flows in and around sunpots and highlights the role of advanced instrumentation in the discovery process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Balthasar, H. & Muglach, K. 2010, Astron. Astrophys 511, A67CrossRefGoogle Scholar
Beck, C., Schmidt, W., Kentischer, T., & Elmore, D. 2005, Astron. Astrophys 437, 1159CrossRefGoogle Scholar
Bello González, N. & Kneer, F. 2008, Astron. Astrophys 480, 265CrossRefGoogle Scholar
Bellot Rubio, L. R., Tritschler, A., & Martínez Pillet, V. 2008, Astrophys. J. 676, 698CrossRefGoogle Scholar
Bellot Rubio, L. R., Tsuneta, S., Ichimoto, K., et al. 2007, Astrophys. J. Lett. 668, L91CrossRefGoogle Scholar
Cabrera Solana, D., Bellot Rubio, L.R., Beck, C. & del Toro Iniesta, J.C. 2006, Astrophys. J. 649, L41CrossRefGoogle Scholar
Cavallini, F. 2006, Solar Phys. 236, 415CrossRefGoogle Scholar
Collados, M., Lagg, A., Díaz García, J.J., et al. 2007, ASP Conf. Ser. 368, 611Google Scholar
Collados, M., Bettonvil, F., Cavaller, L., et al. 2010, Proc. SPIE 7733, 77330HCrossRefGoogle Scholar
Deng, N., Xu, Y., Yang, G., et al. 2006, Astrophys. J. 644, 1278CrossRefGoogle Scholar
Deng, N., Choudhary, D.P., Tritschler, A., et al. 2007, Astrophys. J. 671, 1013.CrossRefGoogle Scholar
Denker, C., Goode, P.R., Ren, D., et al. 2006, Proc. SPIE 6267, 62670ACrossRefGoogle Scholar
Denker, C., Balthasar, H., Hofmann, A., et al. 2010, Proc. SPIE 7735, 77356MCrossRefGoogle Scholar
Franz, M. & Schlichenmaier, R. 2009, Astron. Astrophys 508, 1453CrossRefGoogle Scholar
Goode, P.R., Yurchyshyn, V., Cao, W., et al. 2010, Astrophys. J. Lett. 714, L31CrossRefGoogle Scholar
Gosain, S., Venkatakrishnan, P., & Tiwari, S.K. 2009, Astrophys. J. Lett. 706, L240CrossRefGoogle Scholar
Hirzberger, J., Riethmüller, T., Lagg, A., et al. 2009, Astron. Astrophys 505, 771CrossRefGoogle Scholar
Ichimoto, K., Suematsu, Y., Tsuneta, S., et al. 2007, Pub. Astron. Soc. Jap. 318, 1597Google Scholar
Kosugi, T., Matsuzaki, K., Sakao, T., et al. 2007, Solar Phys. 243, 3CrossRefGoogle Scholar
Kubo, M., Lites, B.W., Ichimoto, K., et al. 2008, Astrophys. J. 681, 1677CrossRefGoogle Scholar
Kumar, P., Srivastava, A.K., Filippov, B., & Uddin, W. 2010, Solar Phys. 266, 39CrossRefGoogle Scholar
Liu, C., Deng, N., Liu, Y., et al. 2005, Astrophys. J. 622, 722CrossRefGoogle Scholar
Martínez Pillet, V., Katsukawa, Y., Puschmann, K.G., & Ruiz Cobo, B. 2009, Astrophys. J. Lett. 701, L79CrossRefGoogle Scholar
Ortiz, A., Bellot Rubio, L.R. & Rouppe van der Voort, L. 2010, Astrophys. J. 713, 1282CrossRefGoogle Scholar
Rimmele, T.R. & Marino, J. 2006, Astrophys. J. 646, 593CrossRefGoogle Scholar
Rimmele, T.R., Wagner, J., Keil, S., et al. 2010, Proc. SPIE 7733, 77330GCrossRefGoogle Scholar
Rouppe van der Voort, L., Bellot Rubio, L.R., & Ortiz, A. 2010, Astrophys. J. Lett. 718, L78CrossRefGoogle Scholar
Sainz Dalda, A. & Bellot Rubio, L.R. 2008, Astron. Astrophys 481, L21CrossRefGoogle Scholar
Sainz Dalda, A. & Martínez Pillet, V. 2005, Astrophys. J. 632, 1176CrossRefGoogle Scholar
Scharmer, G.B. 2006, Astron. Astrophys 447, 1111CrossRefGoogle Scholar
Scharmer, G.B., Gudiksen, B.V., Kiselman, D., et al. 2002, Nature 420, 151CrossRefGoogle Scholar
Schlichenmaier, R. 2002, Astron. Nachr. 323, 3033.0.CO;2-H>CrossRefGoogle Scholar
Schüssler, M. & Vógler, A. 2006, Astrophys. J. Lett. 641, L73CrossRefGoogle Scholar
Shimizu, T., Lites, B.W., Katsukawa, Y., et al. 2008, Astrophys. J. 680, 1467CrossRefGoogle Scholar
Thomas, J.H. 2005, Astron. Astrophys 440, 29CrossRefGoogle Scholar
Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al. 2008, Solar Phys. 249, 167CrossRefGoogle Scholar
Volkmer, R., von der Lühe, O., Denker, C., et al. 2010, Proc. SPIE 7733, 77330KCrossRefGoogle Scholar
Zuccarello, F., Romano, P., Guglielmino, S.L., et al. 2009, Astron. Astrophys 500, L5CrossRefGoogle Scholar