Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T13:50:54.014Z Has data issue: false hasContentIssue false

Variability, flaring and coherence – the complementarity of the maser and superradiance regimes

Published online by Cambridge University Press:  07 February 2024

Martin Houde*
Affiliation:
The University of Western Ontario, London, Ontario N6A 3K7, Canada.
Fereshteh Rajabi
Affiliation:
McMaster University, Hamilton, Ontario L8S 4M1, Canada
Gordon C. MacLeod
Affiliation:
The Open University of Tanzania, P.O. Box 23409, Dar-Es-Salaam, Tanzania Hartebeesthoek Radio Astronomy Observatory, P.O. Box 443, Krugersdorp, 1741, South Africa
Sharmila Goedhart
Affiliation:
South African Radio Astronomy Observatory, 2 Fir Street, Black River Park, Observatory 7925, South Africa Center for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
Yoshihiro Tanabe
Affiliation:
Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
Stefanus P. van den Heever
Affiliation:
Hartebeesthoek Radio Astronomy Observatory, P.O. Box 443, Krugersdorp, 1741, South Africa
Christopher M. Wyenberg
Affiliation:
Institute for Quantum Computing and Department of Physics and Astronomy, The University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
Yoshinori Yonekura
Affiliation:
Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the role that coherence phenomena can have on the intensity variability of spectral lines associated with maser radiation. We do so by introducing the fundamental cooperative radiation phenomenon of (Dicke’s) superradiance and discuss its complementary nature to the maser action, as well as its role in the flaring behaviour of some maser sources. We will consider examples of observational diagnostics that can help discriminate between the two, and identify superradiance as the source of the latter. More precisely, we show how superradiance readily accounts for the different time-scales observed in the multi-wavelength monitoring of the periodic flaring in G9.62+0.20E.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re- use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Benedict, M. G. et al. 1996, Super-radiance: Multiatomic Coherent Emission Google Scholar
Brito, R., Cardoso, V., & Pani, P. In Superradiance, New Frontiers in Black Hole Physics 2015, volume 971 of Lecture Notes in Physics, Berlin Springer Verlag, 199 10.1007/978-3-319-19000-6CrossRefGoogle Scholar
Dicke, R. H. 1954, Phys. Rev., 93, 99 10.1103/PhysRev.93.99CrossRefGoogle Scholar
Dicke, R. H. 1964, Quantum electron., 1, 35 Google Scholar
Feld, M. S. & MacGillivray, J. C. In Coherent Nonlinear Optics 1980, 7 10.1007/978-3-642-81495-2_2CrossRefGoogle Scholar
Ferioli, G., Glicenstein, A., Robicheaux, F., Sutherland, R. T., Browaeys, A., & Ferrier-Barbut, I. 2021, Phys. Rev. Lett., 127, 243602 10.1103/PhysRevLett.127.243602CrossRefGoogle Scholar
Foley, A. R., Alberts, T., Armstrong, R. P., et al. 2016, MNRAS, 460, 1664 10.1093/mnras/stw1040CrossRefGoogle Scholar
Fujisawa, K., Sugiyama, K., Aoki, N., et al. 2012, PASJ, 64, 17 10.1093/pasj/64.1.17CrossRefGoogle Scholar
Goedhart, S., Gaylard, M. J., & van der Walt, D. J. 2003, MNRAS, 339, L33 10.1046/j.1365-8711.2003.06426.xCrossRefGoogle Scholar
Goedhart, S., van Rooyen, R., van der Walt, D. J., Maswanganye, J. P., Sanna, A., MacLeod, G. C., & van den Heever, S. P. 2019, MNRAS, 485, 4676 Google Scholar
Gordon, J. P., Zeiger, H. J., & Townes, C. H. 1954, Phys. Rev., 95, 282 10.1103/PhysRev.95.282CrossRefGoogle Scholar
Gordon, J. P., Zeiger, H. J., & Townes, C. H. 1955, Phys. Rev., 99, 1264 10.1103/PhysRev.99.1264CrossRefGoogle Scholar
Gross, M. & Haroche, S. 1982, Phys, Rep., 93, 301 10.1016/0370-1573(82)90102-8CrossRefGoogle Scholar
Hanbury Brown, R. & Twist, R. Q. 1956, Nature, 178, 1447 10.1038/1781447a0CrossRefGoogle Scholar
MacLeod, G. C., Yonekura, Y., Tanabe, Y., et al. 2022, MNRAS, 516, L96 10.1093/mnrasl/slac083CrossRefGoogle Scholar
Olech, M., Szymczak, M., Wolak, P., Gérard, E., & Bartkiewicz, A. 2020, A&A, 634, A41 Google Scholar
Rajabi, F. & Houde, M. 2016a ApJ, 826, 21610.3847/0004-637X/826/2/216CrossRefGoogle Scholar
Rajabi, F. & Houde, M. 2016b ApJ, 828, 5710.3847/0004-637X/828/1/57CrossRefGoogle Scholar
Rajabi, F. & Houde, M. 2017, Sci. Adv., 3, e1601858 10.1126/sciadv.1601858CrossRefGoogle Scholar
Rajabi, F. & Houde, M. 2020, MNRAS, 494, 5194 10.1093/mnras/staa1067CrossRefGoogle Scholar
Rajabi, F., Houde, M., Bartkiewicz, A., Olech, M., Szymczak, M., & Wolak, P. 2019, MNRAS, 484, 1590 Google Scholar
Rajabi, F., Houde, M., MacLeod, G. C., et al. 2023, arXiv e-prints, arXiv:2303.08793Google Scholar
Sanna, A., Reid, M. J., Moscadelli, L., et al. 2009, ApJ, 706, 464 10.1088/0004-637X/706/1/464CrossRefGoogle Scholar
Skribanowitz, N., Herman, I. P., MacGillivray, J. C., & Feld, M. S. 1973, Phys. Rev. Lett., 30, 309 10.1103/PhysRevLett.30.309CrossRefGoogle Scholar
Szymczak, M., Olech, M., Wolak, P., Bartkiewicz, A., & Gawroński, M. 2016, MNRAS, 459, L56 10.1093/mnrasl/slw044CrossRefGoogle Scholar
Szymczak, M., Olech, M., Wolak, P., Gérard, E., & Bartkiewicz, A. 2018, A&A, 617, A80 Google Scholar
Uchiyama, M., Yamashita, T., Sugiyama, K., et al. 2020, PASJ, 72, 4 10.1093/pasj/psz122CrossRefGoogle Scholar
Yonekura, Y., Saito, Y., Sugiyama, K., et al. 2016, PASJ, 68, 74 10.1093/pasj/psw045CrossRefGoogle Scholar