Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T21:36:56.221Z Has data issue: false hasContentIssue false

UV-IR color profiles of the outer regions of 2K nearby S4G galaxies

Published online by Cambridge University Press:  21 March 2017

Alexandre Y. K. Bouquin
Affiliation:
Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid, Spain email: [email protected]
Armando Gil de Paz
Affiliation:
Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our new, spatially-resolved, photometry in FUV and NUV from images obtained by GALEX, and IRAC1 (3.6 μm) photometry obtained by the Spitzer Space Telescope. We analyzed the surface brightness profiles μFUV, μNUV, μ[3.6], as well as the radial evolution of the (FUV-NUV), (FUV - [3.6]), and (NUV - [3.6]) colors in the Spitzer Survey of Stellar Structures in Galaxies (S4G) galaxies (d < 40 Mpc) sample. We defined the GALEX Blue Sequence (GBS) and GALEX Red Sequence (GBR) from the (FUV - NUV) versus (NUV - [3.6]) color-color diagram, populated by late-type star forming galaxies and quiescent early-type galaxies respectively. While most disk becomes radially bluer for GBS galaxies, and stay constant for GRS galaxies, a large fraction ( > 50%) of intermediary GALEX Green Valley (GGV) galaxies’ outer disks are becoming redder. An outside-in quenching mechanism such as environmentally-related mechanisms such as starvation or ram-pressure-stripping could explain our results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Boissier, S. & Prantzos, N. 2000, MNRAS, 312, 398 Google Scholar
Bouquin, A. Y. K., Gil de Paz, A., Boissier, S., et al. 2015, ApJ, (Letters) 800, L19Google Scholar
Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, ApJS, 173, 185 Google Scholar
Gunn, J. E. & Gott, J. R. III 1972, ApJ, 176, 1 CrossRefGoogle Scholar
Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692 CrossRefGoogle Scholar
Muñoz-Mateos, J. C., Sheth, K., Regan, M., et al. 2015, ApJS, 219, 3 Google Scholar
Sánchez Almeida, J., Elmegreen, B. G., Muñoz-Tuñón, C., et al. 2014, A&ARv, 22, 71 Google Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van der Hulst, T. 2008, A&ARv, 15, 189 Google Scholar
Sheth, K., Regan, M., Hinz, J. L., et al. 2010, PASP, 122, 1397 Google Scholar
Simkin, S. M., van Gorkom, J., Hibbard, J., & Su, H.-J. 1987, Science, 235, 1367 Google Scholar
Somerville, R. S., Hopkins, P. F., Cox, T. J., et al. 2008, MNRAS, 391, 481 Google Scholar
Tilanus, R. P. J. & Allen, R. J. 1993, A&A, 274, 707 Google Scholar
Toomre, A. & Toomre, J. 1972, ApJ, 178, 623 Google Scholar