Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T16:04:02.157Z Has data issue: false hasContentIssue false

Using the Millennium II simulation to test CDM predictions for the structure of massive galaxies

Published online by Cambridge University Press:  17 July 2013

Andrew P. Cooper
Affiliation:
Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany email: [email protected]
Guinevere Kauffmann
Affiliation:
Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany email: [email protected]
Jing Wang
Affiliation:
Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany email: [email protected]
Simon D. M. White
Affiliation:
Max Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have combined the semi-analytic galaxy formation model of Guo et al. (2011) with a novel particle-tagging technique to predict galaxy surface brightness profiles in a representative sample of ~1900 massive dark matter haloes (1012–1014 M) from the Millennium II ΛCDM N body simulation. We focus on the outer regions of galaxies and stars accreted in mergers. Our simulations cover scales from the stellar haloes of Milky Way-like galaxies to the ‘cD envelopes’ of groups and clusters, and resolve low surface brightness substructure such as the tidal streams of dwarf galaxies. We find that the spatial distribution of stars in low surface brightness regions is tightly correlated with DM halo mass and that collisionless merging during the hierarchical assembly of galaxies largely determines the structure of spheroidal stellar components. Our ΛCDM model agrees well with the available data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Abadi, M. G., Navarro, J. F., & Steinmetz, M. 2006, MNRAS, 365, 747CrossRefGoogle Scholar
Barker, M. K., Ferguson, A. M., Irwin, M., et al. 2009, AJ, 138, 1469Google Scholar
Barker, M. K., Ferguson, A. M., Irwin, M. J., et al. 2012, MNRAS, 419, 1489Google Scholar
Bakos, J. & Trujillo, I. 2012, ApJ, submitted (arXiv:1204.3082)Google Scholar
Boylan-Kolchin, M., Springel, V., White, S. D. M., & Jenkins, A., Lemson, G. 2009, MNRAS, 398, 1150CrossRefGoogle Scholar
Bullock, J. S. & Johnston, K. V. 2005, ApJ, 635, 931CrossRefGoogle Scholar
Cole, S. 1991, ApJ, 367, 45CrossRefGoogle Scholar
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168CrossRefGoogle Scholar
Cooper, A. P., et al. 2010, MNRAS, 406, 744CrossRefGoogle Scholar
Courteau, S., et al. 2011, ApJ, 739, 20CrossRefGoogle Scholar
Font, A. S., et al. 2011, MNRAS, 416, 2802CrossRefGoogle Scholar
Gilbert, K. M., Font, A. S., Johnston, K. V., & Guhathakurta, P. 2009, ApJ, 701, 776Google Scholar
Guo, Q., et al. 2011, MNRAS, 413, 101CrossRefGoogle Scholar
Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264, 201CrossRefGoogle Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216CrossRefGoogle Scholar
Li, Y.-S. & White, S. D. M. 2008, MNRAS, 384, 1459Google Scholar
Moster, B. P., et al. 2010, ApJ, 710, 903CrossRefGoogle Scholar
Searle, L. & Zinn, R. 1978, ApJ, 225, 357Google Scholar
Seigar, M. S., Graham, A. W., & Jerjen, H. 2007, MNRAS, 378, 1575CrossRefGoogle Scholar
Somerville, R. S. & Primack, J. R. 1999, MNRAS, 310, 1087Google Scholar
Tal, T. & van Dokkum, P. G. 2011, ApJ, 731, 89CrossRefGoogle Scholar
van Dokkum, P. G., et al. 2010, ApJ, 709, 1018CrossRefGoogle Scholar
White, S. D. M. & Frenk, C. S. 1991, ApJ, 379, 52Google Scholar
White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341CrossRefGoogle Scholar
Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. 2005, MNRAS, 358, 949CrossRefGoogle Scholar