Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T08:22:23.639Z Has data issue: false hasContentIssue false

Using planetary transits to estimate magnetic cycles lengths in Kepler stars

Published online by Cambridge University Press:  12 September 2017

Raissa Estrela
Affiliation:
Center for Radio Astronomy and Astrophysics (CRAAM), Mackenzie Presbyterian University, Sao Paulo, Brazil email: [email protected] Rua da Consolacao01301-000, 896, Sao Paulo, Brazil email: [email protected]
Adriana Valio
Affiliation:
Center for Radio Astronomy and Astrophysics (CRAAM), Mackenzie Presbyterian University, Sao Paulo, Brazil email: [email protected] Rua da Consolacao01301-000, 896, Sao Paulo, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of various solar-type stars along decades showed that they could have magnetic cycles, just like our Sun. These observations yield a relation between the rotation period Prot and the cycle length Pcycle of these stars. Two distinct branches for the cycling stars were identified: active and inactive, classified according to stellar activity level and rotation rate. In this work, we determined the magnetic activity cycle for 6 active stars observed by the Kepler telescope. The method adopted here estimates the activity from the excess in the residuals of the transit light curves. This excess is obtained by subtracting a spotless model transit from the light curve, and then integrating over all the residuals during the transit. The presence of long term periodicity is estimated from the analysis of a Lomb-Scargle periodogram of the complete time series. Finally, we investigate the rotation-cycle period relation for the stars analysed here.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Baliunas, S. L., Donahue, R. A., Soon, W. H., et al., 1995, ApJ, 438, 269 Google Scholar
Böhm-Vitense, E., 2007, ApJ, 657, 486 Google Scholar
Bonomo, A. S., Hébrard, G., Santerne, A., et al., 2012, A&A, 538, A96 Google Scholar
Christiansen, J. L., Jenkins, J. M., Caldwell, D. A., et al., 2012, PASP, 124, 1279 CrossRefGoogle Scholar
Désert, J.-M., Charbonneau, D., Demory, B.-O., et al., 2011, ApJS, 197, 14 CrossRefGoogle Scholar
Estrela, R. & Valio, A., 2016, ApJ, 831, 57 Google Scholar
Marcy, G. W., Isaacson, H., Howard, A. W., et al., 2014, ApJS, 210, 20 Google Scholar
Mathur, S., García, R. A., Ballot, J., Ceillier, T., Salabert, D., Metcalfe, T. S., Régulo, C., Jiménez, A., & Bloemen, S., 2014, A&A, 562A, 124M Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Cambridge: University Press, |c1992, 2nd ed.Google Scholar
Saar, S. H. & Brandenburg, A., 1999, ApJ, 524, 295 CrossRefGoogle Scholar
Sanchis-Ojeda, R. & Winn, J. N., 2011, ApJ, 743, 61 Google Scholar
Sanchis-Ojeda, R., Winn, J. N., Marcy, G. W., et al., 2013, ApJ, 775, 54 Google Scholar
Scargle, J. D., 1982, ApJ, 263, 835 CrossRefGoogle Scholar
Silva, A. V. R., 2003, Ap. Lett., 585, L147 Google Scholar
Skumanich, A., 1972, ApJ, 171, 565S CrossRefGoogle Scholar
Vida, K. & Olah, R., 2013, MNRS, 441, 2744V Google Scholar
Walkowicz, L. M. & Basri, G. S., 2013, MNRAS, 436, 1883 Google Scholar