Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T22:49:02.787Z Has data issue: false hasContentIssue false

Using ground based data as a precursor for Gaia in getting proper motions of satellites

Published online by Cambridge University Press:  07 March 2018

Tobias K. Fritz
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, 530 McCormick Road, VA 22904-4325, USA email: [email protected]
Sean T. Linden
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, 530 McCormick Road, VA 22904-4325, USA email: [email protected]
Paul Zivick
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, 530 McCormick Road, VA 22904-4325, USA email: [email protected]
Nitya Kallivayalil
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, 530 McCormick Road, VA 22904-4325, USA email: [email protected]
Jo Bovy
Affiliation:
Department of Astronomy & Astrophysics at University of Toronto, 50 St. George Street M5S 3H4 Toronto, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bland-Hawthorn, J. & Gerhard, O., 2016, ARAA, 54, 529 CrossRefGoogle Scholar
Bovy, J. & Rix, H.-W., 2013, ApJ, 779, 115 Google Scholar
Bovy, J., 2015, ApJS, 216, 29 Google Scholar
Bovy, J., Bahmanyar, A., Fritz, T. K., & Kallivayalil, N., 2016, ApJ, 833, 31 Google Scholar
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M., 2011, MNRAS, 415, L40 Google Scholar
Boylan-Kolchin, M., Bullock, J. S., Sohn, S. T., Besla, G., & van der Marel, R. P., 2013, ApJ, 768, 140 Google Scholar
Da Costa, G. S., 1995, PASP, 107, 937 CrossRefGoogle Scholar
Debattista, V. P., Roškar, R., Valluri, M., et al., 2013, MNRAS, 434, 2971 Google Scholar
Fritz, T. K. & Kallivayalil, N., 2015, ApJ, 811, 123 Google Scholar
Fritz, T. K., Linden, S. T., Zivick, P., et al., 2017, ApJ, 840, 30 CrossRefGoogle Scholar
Gibbons, S. L. J., Belokurov, V., & Evans, N. W., 2014, MNRAS, 445, 3788 CrossRefGoogle Scholar
Irwin, M. J., Demers, S., & Kunkel, W. E., 1995, ApJ (Letters), 7453, L21 CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J., & Alcock, C., 2013, ApJ, 764, 161 Google Scholar
Kallivayalil, N., Wetzel, A. R., Simon, J. D., et al. 2015, arXiv, 1503.01785Google Scholar
Kazantzidis, S., Abadi, M. G., & Navarro, J. F., 2010, ApJ (Letters), 720, L62 Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F., 1999, ApJ, 522, 82 Google Scholar
Koposov, S. E., Rix, H.-W., & Hogg, D. W., 2010, ApJ, 712, 260 Google Scholar
Koposov, S. E., Irwin, M., Belokurov, V., et al., 2014, MNRAS (Letters), 442, 85 Google Scholar
Law, D. R. & Majewski, S. R., 2010, ApJ, 714, 229 Google Scholar
Odenkirchen, M., Grebel, E. K., Rockosi, C. M., et al., 2001, ApJ (Letters), 548, L165 Google Scholar
Palma, C., Kunkel, W. E., & Majewski, S. R., 2000, PASP, 112, 1305 Google Scholar
Pearson, S., Küpper, A. H. W., Johnston, K. V., & Price-Whelan, A. M., 2015, ApJ, 799, 28 Google Scholar
Sales, L. V., Navarro, J. F., Kallivayalil, N., & Frenk, C. S., 2017, MNRAS, 465, 1879 Google Scholar
Wang, J., Frenk, C. S., Navarro, J. F., Gao, L., & Sawala, T., 2012, MNRAS, 424, 2715 Google Scholar
Zavala, J., Jing, Y. P., Faltenbacher, A., et al., 2009, ApJ, 700, 1779 CrossRefGoogle Scholar
Zinn, R., 1993, APC, 48, 38 Google Scholar