Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T19:01:45.041Z Has data issue: false hasContentIssue false

Upper Limits on Gamma-ray Emission from Supernovae Serendipitously Observed with H.E.S.S.

Published online by Cambridge University Press:  17 October 2017

Rachel Simoni
Affiliation:
GRAPPA/Anton Pannekoek Institute, Universiteit van Amsterdam, Postbus 94249, 1090 GE, Amsterdam, the Netherlands email: [email protected]
Nigel Maxted
Affiliation:
School of Physics, University of New South Wales, 2052, Sydney, Australia email: [email protected]
Mathieu Renaud
Affiliation:
Laboratoire Univers et Particules, Université Montpellier, 34095, Montpellier, France
Jacco Vink
Affiliation:
GRAPPA/Anton Pannekoek Institute, Universiteit van Amsterdam, Postbus 94249, 1090 GE, Amsterdam, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is hypothesized that some young supernovae might have the correct properties to accelerate cosmic rays, which in turn might generate gamma-ray emission by-products. We search for gamma-ray excesses towards supernovae in nearby galaxies which were serendipitously within the field of view of the HESS telescopes within a year of the supernova event. HESS cherenkov air-shower data collected between December 2003 and March 2015 were considered and compared to recent catalogs. Nine candidate supernovae were identified and analysed. No significant emission from these supernovae has been found, and upper limits for their very high energy emission are reported.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abdalla, H., et al. (H. E. S. S. Collaboration) 2016, arXiv1609.00600Google Scholar
Ackermann, M., et al. (Fermi Collaboration) 2013, Science, 339, 807 CrossRefGoogle Scholar
Ackermann, M. et al. (Fermi Collaboration) 2015, ApJ, 807, 169 Google Scholar
Aharonian, F., et al. (H. E. S. S. Collaboration) 2006, A&A, 457, 899 Google Scholar
Aharonian, F, et al. (H. E. S. S. Collaboration) 2008, A&A, 481, 401 Google Scholar
Aharonian, F., et al. (H. E. S. S. Collaboration) 2015, Science, 347, 406 Google Scholar
Ahnen, M., et al. (Magic Collaboration) 2017, arXiv1702.007677Google Scholar
Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219 Google Scholar
Cardillo, M., Amato, E., & Blasi, P. 2015, Astroparticle Physics 69 110.Google Scholar
Chevalier, Roger A., & Fransson, Claes 2016 arXiv preprint arXiv:1612.07459Google Scholar
Fukui, Y., Sano, H., Sato, J. et al. 2012, ApJ, 746, 82 CrossRefGoogle Scholar
Gabici, S. & Aharonian, F. 2014, MNRAS, 445, L70 Google Scholar
Katz, et al. 2011, arXiv:1106.1898Google Scholar
Lau, J., Rowell, G., Burton, G., Fukui, Y. et al. 2017, MNRAS, 464, 3757 Google Scholar
Lennarz, D., et al. (H. E. S. S. Collaboration) 2013, arXiv1307.7727Google Scholar
Li, T.-P. & Ma, Y.-Q. 1983, ApJ, 272, 317 CrossRefGoogle Scholar
Marcowith, A., Renaud, M., Dwarkadas, V., & Tatischeff, V. 2014, NuPhS, 256, 94M Google Scholar
Murase, Thompson et al. 2011, PhRvD, 84, 3003 Google Scholar
de Naurois, M. & Rolland, L. 2009, Aph, 32, 231 Google Scholar
Parsons, R. D. & Hinton, J. A. 2014, Astroparticle Physics, 56, 26 CrossRefGoogle Scholar
Völk, H. J, Berezhko, E. G., & Ksenofontov, L. T. 2011, ApJ, 732, 58 Google Scholar