Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:49:05.577Z Has data issue: false hasContentIssue false

Unveiling the most luminous Lyman-α emitters in the epoch of reionisation

Published online by Cambridge University Press:  04 June 2020

Jorryt Matthee
Affiliation:
Department of Physiscs, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland email: [email protected]
David Sobral
Affiliation:
Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Distant luminous Lyman-α emitters are excellent targets for detailed observations of galaxies in the epoch of reionisation. Spatially resolved observations of these galaxies allow us to simultaneously probe the emission from young stars, partially ionised gas in the interstellar medium and to constrain the properties of the surrounding hydrogen in the circumgalactic medium. We review recent results from (spectroscopic) follow-up studies of the rest-frame UV, Lyman-α and [CII] emission in luminous galaxies observed ∼500 Myr after the Big Bang with ALMA, HST/WFC3 and VLT/X-SHOOTER. These galaxies likely reside in early ionised bubbles and are complex systems, consisting of multiple well separated and resolved components where traces of metals are already present.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, 1Google Scholar
Capak, P., Carilli, C., Jones, G., et al. 2015, Nature, 522, 455CrossRefGoogle Scholar
Carniani, S., Maiolino, R., Amorin, R., et al. 2018, MNRAS, 478, 1170CrossRefGoogle Scholar
Hashimoto, T., Inoue, A., Mawatari, K., et al. 2019, PASJ, 70Google Scholar
Hu, E., Cowie, L., Barger, A., et al. 2010, ApJ, 725, 39410.1088/0004-637X/725/1/394CrossRefGoogle Scholar
Hu, E., Cowie, L., Songaila, A., et al. 2016, ApJ, 825, 7CrossRefGoogle Scholar
Izotov, Y., Worseck, G., Schaerer, D., et al. 2018, MNRAS, 478, 485110.1093/mnras/sty1378CrossRefGoogle Scholar
Konno, A., Ouchi, M., Shibuya, T., et al. 2018, PASJ, 70, 16CrossRefGoogle Scholar
Laursen, P., Sommer-Larsen, J., & Razoumov, A. 2011, ApJ, 728, 52CrossRefGoogle Scholar
Maiolino, R., Carniani, S., Fontana, A., et al. 2015, MNRAS, 452, 54CrossRefGoogle Scholar
Mason, C., Treu, T., Dijkstra, M., et al. 2018, ApJ, 857, 11CrossRefGoogle Scholar
Matthee, J., Sobral, D., Santos, S., et al. 2015, MNRAS, 451, 40010.1093/mnras/stv947CrossRefGoogle Scholar
Matthee, J., Sobral, D., Boone, F., et al. 2017, ApJ, 851, 145CrossRefGoogle Scholar
Matthee, J., Sobral, D., Darvish, B., et al. 2017, MNRAS, 472, 772CrossRefGoogle Scholar
Matthee, J., Sobral, D., Gronke, M., et al. 2018, A&A, 619, 136Google Scholar
Matthee, J., Sobral, D., Boogaard, L., et al. 2019, ApJ, arXiv:1903.08171Google Scholar
Ouchi, M., Ellis, R., Ono, Y., et al. 2013, ApJ, 778, 102CrossRefGoogle Scholar
Pentericci, L., Carniani, S., Castellano, M., et al. 2016, ApJ, 829, 11CrossRefGoogle Scholar
Salpeter, E. 1995, ApJ, 121, 161CrossRefGoogle Scholar
Smit, R., Bouwens, R., Carniani, S., et al. 2018, Nature, 553, 178CrossRefGoogle Scholar
Sobral, D., Matthee, J., Darvish, B., et al. 2015, ApJ, 808, 139CrossRefGoogle Scholar
Sobral, D., Santos, S., Matthee, J., et al. 2018, MNRAS, 476, 4725CrossRefGoogle Scholar
Sobral, D., Matthee, J., Brammer, G., et al. 2019, MNRAS, 482, 2422CrossRefGoogle Scholar
Trainor, R., Strom, A., Steidel, C., et al. 2016, ApJ, 832, 17110.3847/0004-637X/832/2/171CrossRefGoogle Scholar
Verhamme, A., Orlitova, I., Schaerer, D., et al. 2015, A&A, 578, 7Google Scholar
Zheng, Z., Wang, J., Rhoads, J., et al. 2017, ApJ, 842, 22CrossRefGoogle Scholar