Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T02:45:21.806Z Has data issue: false hasContentIssue false

Unveiling the mid-plane temperature and mass distribution in the giant-planet formation zone

Published online by Cambridge University Press:  04 September 2018

Ke Zhang
Affiliation:
Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Ave., Ann Arbor, MI 48109, USA email: [email protected]
Edwin A. Bergin
Affiliation:
Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Ave., Ann Arbor, MI 48109, USA email: [email protected]
Geoffrey A. Blake
Affiliation:
Division of Geological & Planetary Sciences, California Institute of Technology, MC 150-21, Pasadena, CA 91125, USA
L. Ilsedore Cleeves
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Kamber R. Schwarz
Affiliation:
Department of Astronomy, University of Michigan, 311 West Hall, 1085 S University Ave., Ann Arbor, MI 48109, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Core-accretion theory predicts that the formation of giant planets predominantly occurs at the dense mid-plane of the inner ∼50 AU of protoplanetary disks. However, due to observational limitation, this critical region remains to be the least charted area in protoplanetary disks. With its great sensitivity, ALMA recently started to image optically thin line emissions arisen from the mid-plane of the inner 50AU in nearby disks, which unlocks an exciting new path to directly constrain the physical properties of the giant planet formation zone through gas tracers. Here we present the first spatially resolved observations of the 13C18J=3-2 line emission in the TW Hya disk. We show that this emission is optically thin even inside the CO mid-plane snowline. Combining it with the C18J=3-2 images and the previously detected HD J=1-0 flux, we directly constrain the mid-plane temperature and optical depths of the CO gas and dust. We report a mid-plane CO snowline at 20.5 ± 1.3 AU, a mid-plane temperature distribution of 27+4−3×(R/20.5AU)-0.47+0.06−0.07 K, and a gas mass distribution of 13+8−5×(R/20.5AU)-0.9+0.4−0.3 g cm−2 between 5-20.5 AU in the TW Hya protoplanetary disk. We find a total gas/mm-sized dust mass ratio of 140 ± 40 in this region, suggesting that ∼2.4 earth mass of dust aggregates have grown to > cm sizes (and perhaps much larger).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. 2015, ApJL, 808, L3Google Scholar
Andrews, S. M. & Williams, J. P., 2007, ApJ, 671, 1800Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., et al. 2012, ApJ, 744, 162Google Scholar
Andrews, S. M., Wilner, D. J., Zhu, Z., et al. 2016, ApJL, 820, L40Google Scholar
Ansdell, M., Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46Google Scholar
Beckwith, S. V. W. & Sargent, A. I., 1993, ApJ, 402, 280Google Scholar
Benz, W., Ida, S., Alibert, Y., Lin, D., & Mordasini, C. 2014, Protostars and Planets VI, 691Google Scholar
Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature, 493, 644Google Scholar
Birnstiel, T., Klahr, H., & Ercolano, B., 2012, A&A, 539, A148Google Scholar
Chabrier, G., Johansen, A., Janson, M., & Rafikov, R. 2014, Protostars and Planets VI, 619Google Scholar
Donaldson, J. K., Weinberger, A. J., Gagné, J., et al. 2016, ApJ, 833, 95Google Scholar
Dullemond, C. P. & Dominik, C., 2004, A&A, 417, 159Google Scholar
Flaherty, K. M., Hughes, A. M., Rosenfeld, K. A., et al. 2015, ApJ, 813, 99Google Scholar
Hayashi, C., 1981, PTPS, 70, 35Google Scholar
Hogerheijde, M. R., Bekkers, D., Pinilla, P., et al. 2016, A&A, 586, A99Google Scholar
Isella, A., Carpenter, J. M., & Sargent, A. I., 2009, ApJ, 701, 260Google Scholar
Pérez, L. M., Carpenter, J. M., Chandler, C. J., et al. 2012, ApJL, 760, L17Google Scholar
Piétu, V., Dutrey, A., & Guilloteau, S., 2007, A&A, 467, 163Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62Google Scholar
Qi, C., Öberg, K. I., Wilner, D. J., et al. 2013, Science, 341, 630Google Scholar
Rosenfeld, K. A., Andrews, S. M., Hughes, A. M., Wilner, D. J., & Qi, C. 2013a, ApJ, 774, 16Google Scholar
Rosenfeld, K. A., Andrews, S. M., Wilner, D. J., Kastner, J. H., & McClure, M. K. 2013b, ApJ, 775, 136Google Scholar
Schwarz, K. R., Bergin, E. A., Cleeves, L. I., et al. 2016, ApJ, 823, 91Google Scholar
van Leeuwen, F., 2007, A&A, 474, 653Google Scholar
Webb, R. A., Zuckerman, B., Platais, I., et al. 1999, ApJL, 512, L63Google Scholar
Williams, J. P. & McPartland, C., 2016, ApJ, 830, 32Google Scholar
Wilson, T. L., 1999, Reports on Progress in Physics, 62, 143Google Scholar
Zhang, K., Bergin, E. A., Blake, G. A., Cleeves, L. I., & Schwarz, K. R., 2017, Nature Astronomy, 1, 0130Google Scholar
Zhang, K., Isella, A., Carpenter, J. M., & Blake, G. A., 2014, ApJ, 791, 42Google Scholar