Published online by Cambridge University Press: 13 January 2020
Young low-mass protostellar sources are known to show significant chemical diversity in their envelopes at a few 1000s au scale; two distinct cases are hot corino chemistry and warm carbon-chain chemistry (WCCC). It is of great interest how the chemical diversity is inherited to chemistry of disk-forming regions. With the recent ALMA observations, we found that the chemical diversity in envelopes is indeed delivered into the disk-forming regions at a 100 au scale. Moreover, the chemical composition changes drastically from envelopes to disks. We also found sources with the hybrid chemical characteristics; both hot corino chemistry and WCCC occur in spatially separated parts of a single source. This hybrid case may be a common occurrence, while hot corinos and WCCC sources are regarded as distinct cases. This unified view of chemistry in disk-forming regions will be an important clue to tracing the chemical evolution from protostellar cores to protoplanetary disks.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.