Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T19:23:20.396Z Has data issue: false hasContentIssue false

Understanding the origin of radio outflows in Seyfert galaxies using radio polarimetry

Published online by Cambridge University Press:  29 January 2021

Biny Sebastian
Affiliation:
National Centre for Radio Astrophysics (NCRA) - Tata Institute of Fundamental Research (TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India email: [email protected]
Preeti Kharb
Affiliation:
National Centre for Radio Astrophysics (NCRA) - Tata Institute of Fundamental Research (TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India email: [email protected]
Christopher P. O’ Dea
Affiliation:
School of Physics & Astronomy, Rochester Institute of Technology, Rochester, NY, USA Physics and Astronomy, University of Manitoba, Winnipeg, Canada
Jack F. Gallimore
Affiliation:
Department of Physics and Astronomy, Bucknell University, Lewisburg, PA, USA
Stefi A. Baum
Affiliation:
Physics and Astronomy, University of Manitoba, Winnipeg, Canada Carlson Center of Imaging Science, Rochester Institute of Technology, Rochester, NY, USA
Edward J. M. Colbert
Affiliation:
Hume Center for National Security and Technology, 900 N. Glebe Rd, Arlington, VA, USA U.S. Army Research Laboratory Adelphi, MD, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Adebahr, B., Krause, M., Klein, U., et al. 2013, A&A, 555, A23Google Scholar
Baum, S. A., O’Dea, C. P., Dallacassa, D., de Bruyn, A. G., & Pedlar, A. 1993, ApJ, 419, 55310.1086/173508CrossRefGoogle Scholar
Blandford, R. & Eichler, D. 1987, Phys. Rep., 154, 110.1016/0370-1573(87)90134-7CrossRefGoogle Scholar
Cecil, G., Bland-Hawthorn, J., Veilleux, S., & Filippenko, A. V. 2001, ApJ, 555, 33810.1086/321481CrossRefGoogle Scholar
Colbert, E. J. M., Baum, S. A., Gallimore, J. F., O’Dea, C. P., et al. 1996, ApJ, 467, 55110.1086/177633CrossRefGoogle Scholar
Dahlem, M., Weaver, K. A., Heckman, T. M., et al. 1998, ApJS, 118, 45310.1086/313137CrossRefGoogle Scholar
Duric, N. & Seaquist, E. R. 1988, ApJ, 326, 57410.1086/166118CrossRefGoogle Scholar
Gallimore, J. F., Axon, D. J., O’Dea, C. P., Baum, S. A., & Pedlar, A. 2006, AJ, 132, 54610.1086/504593CrossRefGoogle Scholar
Huchra, J. & Burg, R. 1992, ApJ, 393, 9010.1086/171488CrossRefGoogle Scholar
Irwin, J. A. & Seaquist, E. R. 1988, ApJ, 335, 65810.1086/166956CrossRefGoogle Scholar
Irwin, J. A., Schmidt, P., Damas-Segovia, A., et al. 2017, MNRAS, 464, 133310.1093/mnras/stw2414CrossRefGoogle Scholar
Lal, D. V., Sebastian, B., Cheung, C. C., & Pramesh Rao, A. 2019, AJ, 157, 19510.3847/1538-3881/ab1419CrossRefGoogle Scholar
Rush, B., Malkan, M. A., & Spinoglio, L. 1993, ApJS, 89, 110.1086/191837CrossRefGoogle Scholar
Sawada-Satoh, S., Inoue, M., Shibata, K. M., et al. 2000, PASJ, 52, 42110.1093/pasj/52.3.421CrossRefGoogle Scholar
Sebastian, B., Kharb, P., O’Dea, C. P., Colbert, E. J. M., & Baum, S. A. 2019a, ApJ, 883, 18910.3847/1538-4357/ab371aCrossRefGoogle Scholar
Sebastian, B., Kharb, P., O’Dea, C. P., Gallimore, J. F., et al. 2019b, MNRAS, 490, L2610.1093/mnrasl/slz136CrossRefGoogle Scholar
Sebastian, B., Kharb, P, O’Dea, C. P., Gallimore, J. C., Baum, S. A., et al. 2020, MNRAS, 499, 33410.1093/mnras/staa2473CrossRefGoogle Scholar
Trotter, A. S., Greenhill, L. J., Moran, J. M., et al. 1998, ApJ, 495, 74010.1086/305335CrossRefGoogle Scholar
Ulvestad, J. S., Wilson, A. S., & Sramek, R. A. 1981, ApJ, 247, 41910.1086/159051CrossRefGoogle Scholar