Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:51:42.967Z Has data issue: false hasContentIssue false

Ultra-faint Lyman Alpha Emitters with MUSE

Published online by Cambridge University Press:  04 June 2020

Michael V. Maseda
Affiliation:
Leiden Observatory, Leiden University, Postbus 9513, NL-2300RA, Leiden, the Netherlands email: [email protected]
the MUSE GTO Consortium
Affiliation:
Leiden Observatory, Leiden University, Postbus 9513, NL-2300RA, Leiden, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using an ultra-deep, untargeted survey with the MUSE integral field spectrograph on the ESO Very Large Telescope, we obtain spectroscopic redshifts to a depth never explored before: galaxies with observed magnitudes m > 30–32. Specifically, we detect objects via Lyman-α emission at 2.9 < z < 6.7 without individual continuum counterparts in areas covered by the deepest optical/near-infrared imaging taken by the Hubble Space Telescope, the Hubble Ultra Deep Field. In total, we find more than 100 such objects in 9 square arcminutes at these redshifts, also including a number of sources that are visible only in the HST band that contains Lyman-α. Detailed HST and IRAC stacking analyses confirm the Lyman-α emission as well as the 1216 Å breaks, faint UV continua (MUV ∼ −15), and optical emission lines: these objects are the faintest spectroscopically-confirmed galaxies at high-z. The blue UV continuum slopes and measurements/limits on the equivalent widths of Lyman-α, which in some cases exceeds 300 Å, are consistent with ages < 10 Myr, metallicities < 5% solar, and stellar masses < 107–8 solar masses. The nature of these types of objects is intriguing as they could be the faint star-forming sources of Reionization and could represent the initial (strong) phase of stellar mass growth in galaxies.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bacon, R., Accardo, M., Adjali, L., et al. 2010, SPIE, 773508Google Scholar
Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&A, 575, A75Google Scholar
Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, A1Google Scholar
Casertano, S., de Mello, D., Dickinson, M., et al. 2000, AJ, 120, 274710.1086/316851CrossRefGoogle Scholar
Daddi, E., Cimatti, A., Renzini, A., et al. 2004, ApJ, 617, 74610.1086/425569CrossRefGoogle Scholar
Ellis, R., Santos, M. R., Kneib, J.-P., et al. 2001, ApJ, 560, L11910.1086/324423CrossRefGoogle Scholar
Illingworth, G. D., Magee, D., Oesch, P. A., et al. 2013, ApJS, 209, 610.1088/0067-0049/209/1/6CrossRefGoogle Scholar
Inami, H., Bacon, R., Brinchmann, J., et al. 2017, A&A, 608, A2Google Scholar
Ly, C., Malkan, M. A., Hayashi, M., et al. 2011, ApJ, 735, 9110.1088/0004-637X/735/2/91CrossRefGoogle Scholar
Maseda, M. V., van der Wel, A., da Cunha, E., et al. 2013, ApJ, 778, L2210.1088/2041-8205/778/1/L22CrossRefGoogle Scholar
Maseda, M. V., van der Wel, A., Rix, H.-W., et al. 2014, ApJ, 791, 1710.1088/0004-637X/791/1/17CrossRefGoogle Scholar
Maseda, M. V., Bacon, R., Franx, M., et al. 2018, ApJ, 865, L110.3847/2041-8213/aade4bCrossRefGoogle Scholar
Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., et al. 2016, ApJS, 225, 2710.3847/0067-0049/225/2/27CrossRefGoogle Scholar
Raiter, A., Schaerer, D., & Fosbury, R. A. E. 2010, A&A, 523, A64Google Scholar
Rauch, M., Haehnelt, M., Bunker, A., et al. 2008, ApJ, 681, 85610.1086/525846CrossRefGoogle Scholar
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., et al. 2015, ApJ, 802, L1910.1088/2041-8205/802/2/L19CrossRefGoogle Scholar
Salzer, J. J., Gronwall, C., Lipovetsky, V. A., et al. 2000, AJ, 120, 8010.1086/301418CrossRefGoogle Scholar
Stark, D. P., Ellis, R. S., Richard, J., et al. 2007, ApJ, 663, 1010.1086/518098CrossRefGoogle Scholar
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2003, ApJ, 592, 72810.1086/375772CrossRefGoogle Scholar
Steidel, C. C., Shapley, A. E., Pettini, M., et al. 2004, ApJ, 604, 53410.1086/381960CrossRefGoogle Scholar
Tang, M., Stark, D., Chevallard, J., et al. 2018, arXiv e-prints,arXiv:1809.09637Google Scholar