Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T08:34:32.577Z Has data issue: false hasContentIssue false

Two component relativistic acceleration and polarized radiation of the parsec-scale AGN jet

Published online by Cambridge University Press:  08 June 2011

Oliver Porth*
Affiliation:
Max Planck Institut für Astronomie, 69117 Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We perform axisymmetric simulations of two-component jet acceleration using the special relativistic MHD code PLUTO (Mignone et al., 2007). The inner, thermally driven component constitutes a dilute relativistic plasma originating in a high enthalpy central corona. The second component is a Poynting-dominated wind driven by a global current system. Once a near-stationary state is reached, we solve the polarized Synchrotron radiation transport incorporating self-absorption and (internal) Faraday rotation. With this approach we obtain high-resolution radio maps and spectra that can help in the interpretation of observational data from nearby active galactic nuclei by predicting spine-sheath polarization structures and Faraday rotation gradients.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blandford, R. D. & Königl, A.: 1979, ApJ 232, 34CrossRefGoogle Scholar
Broderick, A. E. & Loeb, A.: 2009, APjL 703, L104CrossRefGoogle Scholar
Burbidge, G. R.: 1956, ApJ 124, 416CrossRefGoogle Scholar
Hawley, J. F. & Krolik, J. H.: 2006, ApJ 641, 103CrossRefGoogle Scholar
Komissarov, S. S., Barkov, M. V., Vlahakis, N., & Königl, A.: 2007, MNRAS 380, 51CrossRefGoogle Scholar
Lyutikov, M., Pariev, V. I., & Gabuzda, D. C.: 2005, MNRAS 360, 869CrossRefGoogle Scholar
Marscher, A. P., Jorstad, S. G., Mattox, J. R., & Wehrle, A. E.: 2002, ApJ 577, 85CrossRefGoogle Scholar
McKinney, J. C.: 2006, MNRAS 368, 1561CrossRefGoogle Scholar
Meliani, Z. & Keppens, R.: 2009, ApJ 705, 1594CrossRefGoogle Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A.: 2007, Apjs 170, 228CrossRefGoogle Scholar
Mignone, A., Plewa, T., & Bodo, G.: 2005, Apjs 160, 199CrossRefGoogle Scholar
Porth, O. & Fendt, C.: 2010, ApJ 709, 1100CrossRefGoogle Scholar
Sauty, C., Meliani, Z., Trussoni, E., & Tsinganos, K.: 2004, Apss 293, 75Google Scholar
Shcherbakov, R. V.: 2008, ApJ 688, 695CrossRefGoogle Scholar
Taub, A. H.: 1948, Physical Review 74, 328CrossRefGoogle Scholar
Vlahakis, N. & Königl, A.: 2004, ApJ 605, 656CrossRefGoogle Scholar