No CrossRef data available.
Published online by Cambridge University Press: 08 June 2011
We perform axisymmetric simulations of two-component jet acceleration using the special relativistic MHD code PLUTO (Mignone et al., 2007). The inner, thermally driven component constitutes a dilute relativistic plasma originating in a high enthalpy central corona. The second component is a Poynting-dominated wind driven by a global current system. Once a near-stationary state is reached, we solve the polarized Synchrotron radiation transport incorporating self-absorption and (internal) Faraday rotation. With this approach we obtain high-resolution radio maps and spectra that can help in the interpretation of observational data from nearby active galactic nuclei by predicting spine-sheath polarization structures and Faraday rotation gradients.