Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-12T11:53:21.417Z Has data issue: false hasContentIssue false

Turbulence and magnetic spots at the surface of hot massive stars

Published online by Cambridge University Press:  26 August 2011

Matteo Cantiello
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Jonathan Braithwaite
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Axel Brandenburg
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, AlbaNova University Center, Stockholm University, SE–10691 Stockholm, Sweden
Fabio Del Sordo
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Astronomy, AlbaNova University Center, Stockholm University, SE–10691 Stockholm, Sweden
Petri Käpylä
Affiliation:
NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden Department of Physics, Gustaf Hällströmin katu 2a (PO Box 64), FI-00014, University of Helsinki, Finland
Norbert Langer
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D–53121 Bonn, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hot luminous stars show a variety of phenomena in their photospheres and in their winds which still lack clear physical explanations at this time. Among these phenomena are non-thermal line broadening, line profile variability (LPVs), discrete absorption components (DACs), wind clumping and stochastically excited pulsations. Cantiello et al. (2009) argued that a convection zone close to the surface of hot, massive stars, could be responsible for some of these phenomena. This convective zone is caused by a peak in the opacity due to iron recombination and for this reason is referred to as the “iron convection zone” (FeCZ). 3D MHD simulations are used to explore the possible effects of such subsurface convection on the surface properties of hot, massive stars. We argue that turbulence and localized magnetic spots at the surface are the likely consequence of subsurface convection in early type stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Babel, J. & Montmerle, T. 1997, Astrophys. J., 485, L29CrossRefGoogle Scholar
Belkacem, K., Samadi, R., Goupil, M., et al. 2009, Science, 324, 1540CrossRefGoogle Scholar
Brandenburg, A., Chan, K. L., Nordlund, Å., & Stein, R. F. 2005, Astron. Nachr., 326, 681CrossRefGoogle Scholar
Cantiello, M., Braithwaite, J., Brandenburg, A., et al. 2010, ArXiv e-printsGoogle Scholar
Cantiello, M., Langer, N., Brott, I., et al. 2009, Astron. Astrophys., 499, 279CrossRefGoogle Scholar
Cranmer, S. R. & Owocki, S. P. 1996, Astrophys. J., 462, 469CrossRefGoogle Scholar
Degroote, P., Briquet, M., Auvergne, M., et al. 2010, Astron. Astrophys., 519, A38CrossRefGoogle Scholar
Fraser, M., Dufton, P. L., Hunter, I., & Ryans, R. S. I. 2010, Mon. Not. Roy. Astron. Soc., 404, 1306Google Scholar
Fullerton, A. W., Gies, D. R., & Bolton, C. T. 1996, Astrophys. J. Suppl., 103, 475CrossRefGoogle Scholar
Fullerton, A. W., Massa, D. L., Prinja, R. K., Owocki, S. P., & Cranmer, S. R. 1997, Astron. Astrophys., 327, 699Google Scholar
Goldreich, P. & Kumar, P. 1990, Astrophys. J., 363, 694CrossRefGoogle Scholar
Hibbins, R. E., Dufton, P. L., Smartt, S. J., & Rolleston, W. R. J. 1998, Astron. Astrophys., 332, 681Google Scholar
Kaper, L. & Henrichs, H. F. 1994, Astrophys. Space Sci., 221, 115CrossRefGoogle Scholar
Kaper, L., Henrichs, H. F., Fullerton, A. W., et al. 1997, Astron. Astrophys., 327, 281Google Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, Astron. Astrophys., 491, 353CrossRefGoogle Scholar
Lobel, A. & Blomme, R. 2008, Astrophys. J., 678, 408CrossRefGoogle Scholar
Massa, D., Fullerton, A. W., Nichols, J. S., et al. 1995, Astrophys. J., 452, L53Google Scholar
Prinja, R. K. & Howarth, I. D. 1988, Mon. Not. Roy. Astron. Soc., 233, 123CrossRefGoogle Scholar
Prinja, R. K., Massa, D., & Fullerton, A. W. 2002, Astron. Astrophys., 388, 587CrossRefGoogle Scholar
Rolleston, W. R. J., Brown, P. J. F., Dufton, P. L., & Howarth, I. D. 1996, Astron. Astrophys., 315, 95Google Scholar
ud-Doula, A. & Owocki, S. P. 2002, Astrophys. J., 576, 413CrossRefGoogle Scholar