Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T19:48:29.713Z Has data issue: false hasContentIssue false

Transversal Yarkovsky acceleration for Apophis through jet transport

Published online by Cambridge University Press:  16 October 2024

Luis Benet*
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM) Av. Universidad s/n, Col. Chamilpa, 62210 Cuernavaca, México
Jorge A. Pérez Hernández*
Affiliation:
Telespazio Germany GmbH, Darmstadt, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this contribution we describe the jet transport techniques that we used in Pérez-Hernández and Benet (2022) for the estimation of the Yarkovsky transversal acceleration for (99942) Apophis, which included optical and radar astrometry observations obtained during 2021 Apophis’ fly-by. Our numerical approach exploits automatic differentiation techniques which improve the orbital determination problem. We obtain a non-zero Yarkovsky parameter A2 = (−2.899±0.025) × 10−14 au d−2 which is consistent with other recent determinations of this parameter. Our results allow to constrain the collision probabilities for the close approaches in 2029, 2036 and 2068.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

JPL Small-Body Database (data for Apophis). Accessed: 2023-08-23.Google Scholar
Bottke, W. F. Jr, Vokrouhlickỳ, D., Rubincam, D. P., & Nesvornỳ, D. 2006, The Yarkovsky and YORP effects: Implications for asteroid dynamics. ARAA, 34, 157191.Google Scholar
Brozović, M., Benner, L., McMichael, J., Giorgini, J., Pravec, P., Scheirich, P., Magri, C., Busch, M., Jao, J., Lee, C., et al. 2018, Goldstone and Arecibo radar observations of (99942) Apophis in 2012–2013. Icarus, 300, 115–128.Google Scholar
Chesley, S. R. Potential impact detection for Near-Earth asteroids: the case of 99942 Apophis (2004 MN 4). In Lazzaro, D., Ferraz-Mello, S., & Fernández, J. A., (eds.), Asteroids, Comets, Meteors, Proc. IAU Symposium No. 229, 2006, pp. 215228.CrossRefGoogle Scholar
Del Vigna, A., Faggioli, L., Milani, A., Spoto, F., Farnocchia, D., & Carry, B. 2018, Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data. A & A, 617, A61.CrossRefGoogle Scholar
Desmars, J., Souami, D., Vavilov, D., Hsu, H. M., De Pater, I., & Hestroffer, D. Apophis orbit with stellar occultations. In Asteroids, Comets, Meteors Conference, 2023, Abstract #2376, Houston. Lunar and Planetary Institute.Google Scholar
Farnocchia, D., Chesley, S., Vokrouhlický, D., Milani, A., Spoto, F., & Bottke, W. 2013, Near Earth asteroids with measurable Yarkovsky effect. Icarus, 224(1), 113.CrossRefGoogle Scholar
Folkner, W., Williams, J., Boggs, D., Park, R., & Kuchynka, P. 2014, The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep, 196, 181.Google Scholar
Gimeno, J., Jorba, À., Jorba-Cuscó, M., Miguel, N., & Zou, M. 2023, Numerical integration of high-order variational equations of ODEs. App Maths Comp, 442, 127743.CrossRefGoogle Scholar
Giorgini, J., Ostro, S., Benner, L., Chodas, P., Chesley, S., Hudson, R., Nolan, M., Klemola, A., Standish, E., Jurgens, R., et al. 2002, Asteroid 1950 DA’s encounter with Earth in 2880: Physical limits of collision probability prediction. Science, 296(5565), 132136.CrossRefGoogle ScholarPubMed
Greenberg, A. H., Margot, J.-L., Verma, A. K., Taylor, P. A., & Hodge, S. E. 2020, Yarkovsky drift detections for 247 near-Earth asteroids. AJ, 159(3), 92.CrossRefGoogle Scholar
Milani, A. & Gronchi, G. 2010,. Theory of orbit determination. Cambridge University Press.Google Scholar
Pérez-Hernández, J. A. & Benet, L. 2022, Non-zero Yarkovsky acceleration for near-Earth asteroid (99942) Apophis. Comm Earth & Environm, 3(1).Google Scholar
Pérez-Hernández, J. A. Ramírez-Montoya, L. E., & Benet, L. 2021,. NEOs.jl: Jet Transport-based Near-Earth Object orbital propagator and fitter in Julia. https://github.com/PerezHz/NEOs.jl.Google Scholar
Pérez-Hernández, J. A., Ramírez-Montoya, L. E., & Benet, L. 2021,. Planetary Ephemeris.jl: A planetary and lunar ephemerides integrator based on JPL DE430 dynamical model. https://github.com/PerezHz/PlanetaryEphemeris.jl.Google Scholar
Souami, D., Desmars, J., Tanga, P., Tsiganis, K., de Pater, I., Hsu, Y. M., Ferreira, J., Siakas, A., Chesley, S., Dunham, D., Venable, R., Irwin, J., Watanabe, H., Bouquillon, S., Herald, D., & Preston, S. Stellar occultations by sub-km sized near Earth asteroids: Apophis and Didymos. In Asteroids, Comets, Meteors Conference 2023, Abstract #2099, Houston. Lunar and Planetary Institute.Google Scholar
Vokrouhlický, D., Farnocchia, D., C̆apek, D., Chesley, S., P. Pravec, P.Scheirich, & Müller, T. 2015, The Yarkovsky effect for 99942 Apophis. Icarus, 252, 277283.Google Scholar
Vokrouhlický, D., Milani, A., & Chesley, S. 2000, Yarkovsky effect on small near-Earth asteroids: Mathematical formulation and examples. Icarus, 148(1), 118138.CrossRefGoogle Scholar