Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T07:10:25.259Z Has data issue: false hasContentIssue false

Transitional disk archeology from exoplanet population synthesis

Published online by Cambridge University Press:  13 January 2020

Germán Chaparro Molano
Affiliation:
Vicerrectoría de Investigación, Universidad ECCI, Bogotá, Colombia, email: [email protected]
Frank Bautista
Affiliation:
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia, email: [email protected]
Yamila Miguel
Affiliation:
Sterrewacht Leiden, Leiden University, Leiden, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Increasingly better observations of resolved protoplanetary disks show a wide range of conditions in which planets can be formed. Many transitional disks show gaps in their radial density structure, which are usually interpreted as signatures of planets. It has also been suggested that observed inhomogeneities in transitional disks are indicative of dust traps which may help the process of planet formation. However, it is yet to be seen if the configuration of fully evolved exoplanetary systems can yield information about the later stages of their primordial disks. We use synthetic exoplanet population data from Monte Carlo simulations of systems forming under different density perturbation conditions, which are based on current observations of transitional disks. The simulations use a core instability, oligarchic growth, dust trap analytical model that has been benchmarked against exoplanetary populations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Benz, W., Ida, S., Alibert, Y., Lin, D. N. C., & Mordasini, C. 2014, in Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. (eds.) Protostars and Planets VI, Univ. of Arizona Press, 944 Google Scholar
Hughes, A. M., Duchêne, G., & Matthews, B. C. 2018, Annu. Rev. Astron. Astrophys., 56, 541 CrossRefGoogle Scholar
Mayor, G. M., Marmier, M., Lovis, C., et al. 2011, arXiv:1109.2497Google Scholar
Miguel, Y., Guilera, M., & Buruni, A. 2011, MNRAS, 417, 314 CrossRefGoogle Scholar
Pinilla, P., Birnstiel, T., Ricci, L., Dullemond, C. P., Uribe, A. L., Testi, L., & Natta, A. 2012, A&A, 538, A114 Google Scholar
Pinilla, P., Tazzari, M., Pascucci, I., et al. 2018, ApJ, 859, 32 CrossRefGoogle Scholar
Pinilla, P., van der Marel, N., Pérez, L. M., van Dishoeck, E. F., Andrews, S., Birnstiel, T., Herczeg, G., Pontoppidan, K. M., & van Kempen, T. 2015, A&A, 584, A16 Google Scholar
Raymond, S. N., Boulet, T., Izidoro, A., Esteves, L., & Bitsch, B. 2018, MNRAS, 479, L81 CrossRefGoogle Scholar
van der Marel, N., van Dishoeck, E. F., Bruderer, S., Andrews, S. M., Pontoppidan, K. M., Herczeg, G. J., van Kempen, T. & Miotello, A. 2016, A&A, 585, A58 Google Scholar
van der Marel, N., van Dishoeck, E. F., Bruderer, S., Pérez, L., & Isella, A. 2015, A&A, 579, A106 Google Scholar