Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T13:14:37.260Z Has data issue: false hasContentIssue false

Tracing Cosmic Dawn

Published online by Cambridge University Press:  08 May 2018

Anastasia Fialkov*
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observational effort is on the way to probe the 21-cm of neutral hydrogen from the epochs of Reionization and Cosmic Dawn. Our current poor knowledge of high redshift astrophysics results in a large uncertainty in the theoretically predicted 21-cm signal. A recent parameter study that is highlighted here explores the variety of 21-cm signals resulting from viable astrophysical scenarios. Model-independent relations between the shape of the signal and the underlying astrophysics are discussed. Finally, I briefly note on possible alternative probes of the high redshift Universe, specifically Fast Radio Bursts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Brorby, M., Kaaret, P., Prestwich, A., & Mirabel, I. F., 2016, MNRAS, 457, 4081Google Scholar
Cohen, A., Fialkov, A., Barkana, R., & Lotem, M., 2017, MNRAS, 472, 1915Google Scholar
Cohen, A., Fialkov, A. & Barkana, R., 2017, submittedGoogle Scholar
Cohen, A., Fialkov, A., Barkana, R. & Monsalve, R., in prep.Google Scholar
Fialkov, A., Cohen, A., Barkana, R., & Silk, J., 2017, MNRAS, 464, 3498Google Scholar
Fialkov, A., & Loeb, A., 2017, ApJ, 846, 27Google Scholar
Fialkov, A., & Loeb, A., 2016, JCAP, 05, 004Google Scholar
Fialkov, A., Barkana, R., & Visbal, E., 2014, Nature, 506, 197Google Scholar
Field, G. B., 1958, Proceedings of the IRE, 46, 240Google Scholar
Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A., & Basu- Zych, A., 2013, ApJ, 776, L31CrossRefGoogle Scholar
Liu, A., Pritchard, J. R., Allison, R., Parsons, A. R., Seljak, U., & Sherwin, B. D., 2016, PRD, 93, 3013Google Scholar
Miranda, V., Lidz, A., Heinrich, C. H., & Hu, W., 2017, MNRAS, 467, 4050Google Scholar
Monsalve, R. & Fialkov, A., et al., 2017, in prep.Google Scholar
O’Shea, B. W., Wise, J. H., Xu, H., & Norman, M. L., 2015, ApJ, 807, 12Google Scholar
Oesch, P. A., Brammer, G., van Dokkum, P. G., Illingworth, G. D., Bouwens, R. J., et al. 2016, ApJ, 818, 129Google Scholar
Pacucci, F., Mesinger, A., Mineo, S., & Ferrara, A., 2014, MNRAS, 443, 678Google Scholar
Planck Collaboration, Aghanim, N., Ashdown, M., et al., 2016, A&A, 596, A107Google Scholar
Pober, J. C., Ali, Z. S., Parsons, A. R., et al. 2015, ApJ, 809, 62CrossRefGoogle Scholar
Price, D. C., Greenhill, L. J., Fialkov, A., Bernardi, G., Garsden, H. et al., 2017, submittedGoogle Scholar
Singh, S., Subrahmanyan, R., Udaya, S. N., Sathyanarayana Rao, M., & Fialkov, A., 2017, ApJ, 845, 12Google Scholar
Singh, S., Subrahmanyan, R., Udaya, S. N., Sathyanarayana Rao, M., & Fialkov, A., 2017, submittedGoogle Scholar
Tegmark, M., Silk, J., Rees, M., Blanchard, A., Abel, T., & Palla, F., 1997, ApJ, 474, 1Google Scholar
Tendulkar, S. P., Bassa, C. G., Cordes, J. M., Bower, G. C., Law, C. J., et al. 2017, ApJ, 834L, 7Google Scholar
Wise, J. H., Demchenko, V. G., Halicek, M. T., Norman, M. L., Turk, M. J., Abel, T., & Smith, B. D., 2014, MNRAS, 442, 2560Google Scholar
Wouthuysen, S. A., 1952, AJ, 57, 31Google Scholar
Xu, H., Wise, J. H., Norman, M. L., Ahn, K., & O’Shea, B. W., 2016, ApJ, 833, 84Google Scholar