Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:24:50.287Z Has data issue: false hasContentIssue false

Toward three-dimensional simulations of stellar core collapse with magnetic fields

Published online by Cambridge University Press:  01 August 2006

M. Liebendörfer
Affiliation:
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email: [email protected]
S. Whitehouse
Affiliation:
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email: [email protected]
T. Fischer
Affiliation:
University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In spherical symmetry, very reliable models of stellar core collapse, bounce, and the postbounce phase can be constructed based on general relativistic Boltzmann neutrino transport. However, even if the time-integrated neutrino luminosity in the region between the surface of the protoneutron star and the stalled accretion shock is one or two orders of magnitude larger than the energy of a supernova explosion, it is generally accepted that the net energy transfer is not efficient enough to drive an explosion, unless the fluid instabilities in this regime are taken into account. Complementary to other groups, who are elaborating an extension of the accurate neutrino physics to axisymmetric simulations, we construct efficient parameterizations of the neutrino physics that enable three-dimensional magneto-hydrodynamics simulations that do not constrain the fluid instabilities by artificially imposed symmetries. We evaluate our approximations with respect to spherically symmetric Boltzmann neutrino transport, present preliminary MHD simulations with a resolution of 600 zones cubed, and illustrate the questions that can be addressed by this approach.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bethe, H. A. & Wilson, J. R., 1985, ApJ, 295, 14CrossRefGoogle Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C., 2003, ApJ, 584, 971CrossRefGoogle Scholar
Buras, R., Rampp, M., Janka, H.-T., & Kifonidis, K., 2003, Phys. Rev. Lett., 90, 241101CrossRefGoogle Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C., & Murphy, J., 2005, arXiv:astro-ph/0510687Google Scholar
Dessart, L., Burrows, A., Ott, C. D., Livne, E., Yoon, S.-Y., & Langer, N., 2006, ApJ, 644, 1063CrossRefGoogle Scholar
Fryer, C. L. & Warren, M. S., 2004, ApJ, 601, 391CrossRefGoogle Scholar
Herant, M., Benz, W., Hix, W. R., Fryer, C. L., & Colgate, S. A., 1994, ApJ, 435, 339CrossRefGoogle Scholar
Kitaura, F. S., Janka, H.-T., & Hillebrandt, W. 2006, A&A, 450, 345Google Scholar
Lattimer, J. M. & Swesty, F. D., 1991, Nucl. Phys. A, 535, 331CrossRefGoogle Scholar
Liebendörfer, M., 2005, ApJ, 633, 1042CrossRefGoogle Scholar
Liebendörfer, , Mezzacappa, , Thielemann, , Messer, , Hix, , & Bruenn, , 2001, Phys. Rev. D, 63, 103004CrossRefGoogle Scholar
Liebendörfer, M., Pen, U., & Thompson, C., 2006, PoS (NIC-IX) 132Google Scholar
Marek, A., Dimmelmeier, H., Janka, H.-T., Müller, E., & Buras, R., 2006, A&A, 445, 273Google Scholar
Pen, U.-L., Arras, P., & Wong, S., 2003, ApJS, 149, 447CrossRefGoogle Scholar
Rampp, M. & Janka, H.-T., 2000, ApJ, 539, L33CrossRefGoogle Scholar
Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., & Toki, H., 2005, ApJ, 629, 922CrossRefGoogle Scholar
Thompson, T. A., Burrows, A., & Pinto, P. A., 2003, ApJ, 592, 434CrossRefGoogle Scholar
Woosley, S. E., & Weaver, T. A., 1995, ApJS, 101, 181CrossRefGoogle Scholar