Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T15:54:45.187Z Has data issue: false hasContentIssue false

Toward a homogeneous set of transiting planet parameters

Published online by Cambridge University Press:  01 May 2008

Guillermo Torres
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA email: [email protected], [email protected]
Joshua N. Winn
Affiliation:
Dept. of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA email: [email protected]
Matthew J. Holman
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With 40 or more transiting exoplanets now known, the time is ripe to seek patterns and correlations among their observed properties, which may give important insights into planet formation, structure, and evolution. This task is made difficult by the widely different methodologies that have been applied to measure their properties in individual cases. Furthermore, in many systems our knowledge of the planet properties is limited by the knowledge of the properties of the parent stars. To address these difficulties we have undertaken the first comprehensive analysis of the data for 23 transiting planets using a uniform methodology. We revisit several of the recently proposed correlations, and find new ones involving the metallicity of the parent stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403Google Scholar
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502CrossRefGoogle Scholar
Gaudi, B. S., Seager, S., & Mallén-Ornelas, G. 2005, ApJ, 623, 472CrossRefGoogle Scholar
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371Google Scholar
Guillot, T., Santos, N. C., Pont, F., Iro, N., Melo, C., & Ribas, I. 2006, A&A, 453, L21Google Scholar
Hansen, B. M. S., & Barman, T. 2007, ApJ, 671, 861CrossRefGoogle Scholar
Mazeh, T., Zucker, S., & Pont, F. 2005, MNRAS, 356, 995CrossRefGoogle Scholar
Southworth, J., Wheatley, P. J. & Sams, G. 2007, MNRAS, 379, L11CrossRefGoogle Scholar
Sozzetti, A., Torres, G., Charbonneau, D., Latham, D. W., Holman, M. J., Winn, J. N., Laird, J. B., & O'Donovan, F. T. 2007, ApJ, 664, 1190CrossRefGoogle Scholar
Torres, G., Winn, J. N., & Holman, M. J. 2008, ApJ, 677, 1324CrossRefGoogle Scholar
Yi, S. K., Demarque, P., Kim, Y.-C., Lee, Y.-W., Ree, C. H., Lejeune, T., & Barnes, S. 2001, ApJS, 136, 417CrossRefGoogle Scholar