Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T20:07:34.096Z Has data issue: false hasContentIssue false

The tip-of-the-red-giant-branch distance indicator and the structure of the nearest galaxy groups

Published online by Cambridge University Press:  26 February 2013

Lidia Makarova
Affiliation:
Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai–Cherkessian Republic, Russia, 369167 email: [email protected]
Dmitry Makarov
Affiliation:
Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai–Cherkessian Republic, Russia, 369167 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The tip of the red giant branch (TRGB) is one of the most accurate distance indicators to galaxies in the Local Universe (for distances up to 8–10 Mpc). A distance accuracy as high as 5% can be achieved with the recently developed maximum-likelihood implementation of the TRGB method and modern calibrations. In this paper, we consider in detail TRGB distance determinations to nearby groups of galaxies (within 8 Mpc). We discuss the photometric accuracy and describe colour–magnitude-diagram features of nearby dwarf galaxies and their influence on the accuracy of distance determination. We have determined accurate structures of the two nearest galaxy groups, M81 and Cen A, using observations of galaxies in these groups with the Hubble Space Telescope's WFPC2 and ACS instruments. The new technique allows us to see new details in the distribution of galaxies in the Canes Venatici i Cloud.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Karachentsev, I. D., Dolphin, A., Tully, R. B., et al. 2006, AJ, 131, 1361CrossRefGoogle Scholar
Karachentsev, I. D., Tully, R. B., Dolphin, A., et al. 2007, AJ, 133, 504Google Scholar
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553Google Scholar
Makarov, D., Makarova, L., Rizzi, L., Tully, R. B., Dolphin, A. E., Sakai, S., & Shaya, E. J. 2006, AJ, 132, 2729Google Scholar
Makarov, D., Makarova, L., Sharina, M., Uklein, R., Tikhonov, A., Guhathakurta, P., Kirby, E., & Terekhova, N. 2012, MNRAS, 425, 709Google Scholar
Makarova, L. N., Grebel, E. K., Karachentsev, I. D., et al. 2002, A&A, 396, 473Google Scholar
Makarova, L., Makarov, D., Dolphin, A., et al. 2007, Proc. IAU Symp., 235, 320Google Scholar
Méndez, B., Davis, M., Moustakas, J., Newman, J., Madore, B. F., & Freedman, W. L. 2002, AJ, 124, 213CrossRefGoogle Scholar
Rizzi, L., Tully, R. B., Makarov, D., Makarova, L., Dolphin, A. E., Sakai, S., & Shaya, E. J. 2007, ApJ, 661, 815Google Scholar
Sakai, S., Madore, B. F., & Freedman, W. L. 1996, ApJ, 461, 713Google Scholar